I need to create a function in Groovy that has a single integer as a parameter and returns the number of significant figures it contains - groovy

Long story short, I'm working in a system that only works with groovy in its expression editor, and I need to create a function that returns the number of significant figures an integer has. I've found the following function in stack overflow for Java, however it doesnt seem like groovy (or the system itself) likes the regex:
String myfloat = "0.0120";
String [] sig_figs = myfloat.split("(^0+(\\.?)0*|(~\\.)0+$|\\.)");
int sum = 0;
for (String fig : sig_figs)
{
sum += fig.length();
}
return sum;
I've since tried to convert it into a more Groovy-esque syntax to be compatible, and have produced the following:
def sum = 0;
def myint = toString(mynum);
def String[] sig_figs = myint.split(/[^0+(\\.?)0*|(~\\.)0+$|\\.]/);
for (int i = 0; i <= sig_figs.size();i++)
{
sum += sig_figs[i].length();
}
return(sum);
Note that 'mynum' is the parameter of the method
It should also be noted that this system has very little visibility in regards to what groovy functions are available in the system, so the solution likely needs to be as basic as possible
Any help would be greatly appreciated. Thanks!

I think this is the regex you need:
def num = '0.0120'
def splitted = num.split(/(^0+(\.?)0*|(~\.)0+$|\.)/)
def sf = splitted*.length().sum()

It's been a while since I've had to think about significant figures, so sorry if I have the wrong idea. But I've made two regular expressions that combined should count the number of significant figures (sorry I'm no regex wizard) in a string representing a decimal. It doesn't handle commas, you would have to strip those out.
This first regex matches all significant figures before the decimal point
([1-9]+\d*[1-9]|[1-9]+)
And this second regex matches all significant figures after the decimal point:
\.((\d*[1-9]+)+)?
If you add up the lengths of the first capture group (or 0 when no match) for both matches, then it should give you the number of significant figures.
Example:
import java.util.regex.Matcher;
import java.util.regex.Pattern;
public class SigFigs {
private static final Pattern pattern1 = Pattern.compile("([1-9]+\\d*[1-9]|[1-9]+)");
private static final Pattern pattern2 = Pattern.compile("\\.((\\d*[1-9]+)+)?");
public static int getSignificantFigures(String number) {
int sigFigs = 0;
for (int i=0; i < 2; i++) {
Matcher matcher = (i == 0 ? pattern1 : pattern2).matcher(number);
if (matcher.find()) {
try {
String s = matcher.group(1);
if (s != null) sigFigs += s.length();
} catch (IndexOutOfBoundsException ignored) { }
}
}
return sigFigs;
}
public static void main(String[] args) {
System.out.println(getSignificantFigures("0305.44090")); // 7 sig. figs
}
}
Of course using two matches is suboptimal (like I've said, I'm not crazy good at regex like some I could mention) but its fairly robust and readable

Related

Program to find if a string is a palindrome keeps on failing. Even after using toLowerCase() command for both strings, output doesn't come

import java.util.Scanner;
class Palindrome_string
{
public static void main()
{
System.out.println("\f");
Scanner sc = new Scanner(System.in);
System.out.println("Enter a string");
String a = sc.nextLine();
int b = a.length();
String rev = "";
for (int i = b - 1; i >= 0; i--)
{
char c = a.charAt(i);
rev = rev + c;
}
System.out.println("Original word "+a);
System.out.println("Reversed word "+rev);
a = a.toLowerCase();
rev = rev.toLowerCase();
if (a == rev)
{
System.out.println("It is a palindrome");
}
else
{
System.out.println("It is not a palindrome");
}
sc.close();
}
}
The program compiles properly. Still, when running the program, the message which tells if it is a palindrome prints incorrectly. What changes do I make? Here is a picture of the output. Even though the word 'level' (which is a palindrome) has been inputted, it shows that it isn't a palindrome. What changes should I make? output pic
You should not use == to compare two strings because it compares the reference of the string, i.e. whether they are the same object or not.
Use .equals() instead. It tests for value equality. So in your case:
if (a.equals(rev))
{
System.out.println("It is a palindrome");
}
Also try not to use single-letter variable names except for index variables when iterating over a list etc. It's bad practice.

Dynamic character generator; Generate all possible strings from a character set

I want to make a dynamic string generator that will generate all possible unique strings from a character set with a dynamic length.
I can make this very easily using for loops but then its static and not dynamic length.
// Prints all possible strings with the length of 3
for a in allowedCharacters {
for b in allowedCharacters {
for c in allowedCharacters {
println(a+b+c)
}
}
}
But when I want to make this dynamic of length so I can just call generate(length: 5) I get confused.
I found this Stackoverflow question But the accepted answer generates strings 1-maxLength length and I want maxLength on ever string.
As noted above, use recursion. Here is how it can be done with C#:
static IEnumerable<string> Generate(int length, char[] allowed_chars)
{
if (length == 1)
{
foreach (char c in allowed_chars)
yield return c.ToString();
}
else
{
var sub_strings = Generate(length - 1, allowed_chars);
foreach (char c in allowed_chars)
{
foreach (string sub in sub_strings)
{
yield return c + sub;
}
}
}
}
private static void Main(string[] args)
{
string chars = "abc";
List<string> result = Generate(3, chars.ToCharArray()).ToList();
}
Please note that the run time of this algorithm and the amount of data it returns is exponential as the length increases which means that if you have large lengths, you should expect the code to take a long time and to return a huge amount of data.
Translation of #YacoubMassad's C# code to Swift:
func generate(length: Int, allowedChars: [String]) -> [String] {
if length == 1 {
return allowedChars
}
else {
let subStrings = generate(length - 1, allowedChars: allowedChars)
var arr = [String]()
for c in allowedChars {
for sub in subStrings {
arr.append(c + sub)
}
}
return arr
}
}
println(generate(3, allowedChars: ["a", "b", "c"]))
Prints:
aaa, aab, aac, aba, abb, abc, aca, acb, acc, baa, bab, bac, bba, bbb, bbc, bca, bcb, bcc, caa, cab, cac, cba, cbb, cbc, cca, ccb, ccc
While you can (obviously enough) use recursion to solve this problem, it quite an inefficient way to do the job.
What you're really doing is just counting. In your example, with "a", "b" and "c" as the allowed characters, you're counting in base 3, and since you're allowing three character strings, they're three digit numbers.
An N-digit number in base M can represent NM different possible values, going from 0 through NM-1. So, for your case, that's limit=pow(3, 3)-1;. To generate all those values, you just count from 0 through the limit, and convert each number to base M, using the specified characters as the "digits". For example, in C++ the code can look like this:
#include <string>
#include <iostream>
int main() {
std::string letters = "abc";
std::size_t base = letters.length();
std::size_t digits = 3;
int limit = pow(base, digits);
for (int i = 0; i < limit; i++) {
int in = i;
for (int j = 0; j < digits; j++) {
std::cout << letters[in%base];
in /= base;
}
std::cout << "\t";
}
}
One minor note: as I've written it here, this produces the output in basically a little-endian format. That is, the "digit" that varies the fastest is on the left, and the one that changes the slowest is on the right.

Sorting a string using another sorting order string [closed]

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 7 years ago.
Improve this question
I saw this in an interview question ,
Given a sorting order string, you are asked to sort the input string based on the given sorting order string.
for example if the sorting order string is dfbcae
and the Input string is abcdeeabc
the output should be dbbccaaee.
any ideas on how to do this , in an efficient way ?
The Counting Sort option is pretty cool, and fast when the string to be sorted is long compared to the sort order string.
create an array where each index corresponds to a letter in the alphabet, this is the count array
for each letter in the sort target, increment the index in the count array which corresponds to that letter
for each letter in the sort order string
add that letter to the end of the output string a number of times equal to it's count in the count array
Algorithmic complexity is O(n) where n is the length of the string to be sorted. As the Wikipedia article explains we're able to beat the lower bound on standard comparison based sorting because this isn't a comparison based sort.
Here's some pseudocode.
char[26] countArray;
foreach(char c in sortTarget)
{
countArray[c - 'a']++;
}
int head = 0;
foreach(char c in sortOrder)
{
while(countArray[c - 'a'] > 0)
{
sortTarget[head] = c;
head++;
countArray[c - 'a']--;
}
}
Note: this implementation requires that both strings contain only lowercase characters.
Here's a nice easy to understand algorithm that has decent algorithmic complexity.
For each character in the sort order string
scan string to be sorted, starting at first non-ordered character (you can keep track of this character with an index or pointer)
when you find an occurrence of the specified character, swap it with the first non-ordered character
increment the index for the first non-ordered character
This is O(n*m), where n is the length of the string to be sorted and m is the length of the sort order string. We're able to beat the lower bound on comparison based sorting because this algorithm doesn't really use comparisons. Like Counting Sort it relies on the fact that you have a predefined finite external ordering set.
Here's some psuedocode:
int head = 0;
foreach(char c in sortOrder)
{
for(int i = head; i < sortTarget.length; i++)
{
if(sortTarget[i] == c)
{
// swap i with head
char temp = sortTarget[head];
sortTarget[head] = sortTarget[i];
sortTarget[i] = temp;
head++;
}
}
}
In Python, you can just create an index and use that in a comparison expression:
order = 'dfbcae'
input = 'abcdeeabc'
index = dict([ (y,x) for (x,y) in enumerate(order) ])
output = sorted(input, cmp=lambda x,y: index[x] - index[y])
print 'input=',''.join(input)
print 'output=',''.join(output)
gives this output:
input= abcdeeabc
output= dbbccaaee
Use binary search to find all the "split points" between different letters, then use the length of each segment directly. This will be asymptotically faster then naive counting sort, but will be harder to implement:
Use an array of size 26*2 to store the begin and end of each letter;
Inspect the middle element, see if it is different from the element left to it. If so, then this is the begin for the middle element and end for the element before it;
Throw away the segment with identical begin and end (if there are any), recursively apply this algorithm.
Since there are at most 25 "split"s, you won't have to do the search for more than 25 segemnts, and for each segment it is O(logn). Since this is constant * O(logn), the algorithm is O(nlogn).
And of course, just use counting sort will be easier to implement:
Use an array of size 26 to record the number of different letters;
Scan the input string;
Output the string in the given sorting order.
This is O(n), n being the length of the string.
Interview questions are generally about thought process and don't usually care too much about language features, but I couldn't resist posting a VB.Net 4.0 version anyway.
"Efficient" can mean two different things. The first is "what's the fastest way to make a computer execute a task" and the second is "what's the fastest that we can get a task done". They might sound the same but the first can mean micro-optimizations like int vs short, running timers to compare execution times and spending a week tweaking every millisecond out of an algorithm. The second definition is about how much human time would it take to create the code that does the task (hopefully in a reasonable amount of time). If code A runs 20 times faster than code B but code B took 1/20th of the time to write, depending on the granularity of the timer (1ms vs 20ms, 1 week vs 20 weeks), each version could be considered "efficient".
Dim input = "abcdeeabc"
Dim sort = "dfbcae"
Dim SortChars = sort.ToList()
Dim output = New String((From c In input.ToList() Select c Order By SortChars.IndexOf(c)).ToArray())
Trace.WriteLine(output)
Here is my solution to the question
import java.util.*;
import java.io.*;
class SortString
{
public static void main(String arg[])throws IOException
{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
// System.out.println("Enter 1st String :");
// System.out.println("Enter 1st String :");
// String s1=br.readLine();
// System.out.println("Enter 2nd String :");
// String s2=br.readLine();
String s1="tracctor";
String s2="car";
String com="";
String uncom="";
for(int i=0;i<s2.length();i++)
{
if(s1.contains(""+s2.charAt(i)))
{
com=com+s2.charAt(i);
}
}
System.out.println("Com :"+com);
for(int i=0;i<s1.length();i++)
if(!com.contains(""+s1.charAt(i)))
uncom=uncom+s1.charAt(i);
System.out.println("Uncom "+uncom);
System.out.println("Combined "+(com+uncom));
HashMap<String,Integer> h1=new HashMap<String,Integer>();
for(int i=0;i<s1.length();i++)
{
String m=""+s1.charAt(i);
if(h1.containsKey(m))
{
int val=(int)h1.get(m);
val=val+1;
h1.put(m,val);
}
else
{
h1.put(m,new Integer(1));
}
}
StringBuilder x=new StringBuilder();
for(int i=0;i<com.length();i++)
{
if(h1.containsKey(""+com.charAt(i)))
{
int count=(int)h1.get(""+com.charAt(i));
while(count!=0)
{x.append(""+com.charAt(i));count--;}
}
}
x.append(uncom);
System.out.println("Sort "+x);
}
}
Here is my version which is O(n) in time. Instead of unordered_map, I could have just used a char array of constant size. i.,e. char char_count[256] (and done ++char_count[ch - 'a'] ) assuming the input strings has all ASCII small characters.
string SortOrder(const string& input, const string& sort_order) {
unordered_map<char, int> char_count;
for (auto ch : input) {
++char_count[ch];
}
string res = "";
for (auto ch : sort_order) {
unordered_map<char, int>::iterator it = char_count.find(ch);
if (it != char_count.end()) {
string s(it->second, it->first);
res += s;
}
}
return res;
}
private static String sort(String target, String reference) {
final Map<Character, Integer> referencesMap = new HashMap<Character, Integer>();
for (int i = 0; i < reference.length(); i++) {
char key = reference.charAt(i);
if (!referencesMap.containsKey(key)) {
referencesMap.put(key, i);
}
}
List<Character> chars = new ArrayList<Character>(target.length());
for (int i = 0; i < target.length(); i++) {
chars.add(target.charAt(i));
}
Collections.sort(chars, new Comparator<Character>() {
#Override
public int compare(Character o1, Character o2) {
return referencesMap.get(o1).compareTo(referencesMap.get(o2));
}
});
StringBuilder sb = new StringBuilder();
for (Character c : chars) {
sb.append(c);
}
return sb.toString();
}
In C# I would just use the IComparer Interface and leave it to Array.Sort
void Main()
{
// we defin the IComparer class to define Sort Order
var sortOrder = new SortOrder("dfbcae");
var testOrder = "abcdeeabc".ToCharArray();
// sort the array using Array.Sort
Array.Sort(testOrder, sortOrder);
Console.WriteLine(testOrder.ToString());
}
public class SortOrder : IComparer
{
string sortOrder;
public SortOrder(string sortOrder)
{
this.sortOrder = sortOrder;
}
public int Compare(object obj1, object obj2)
{
var obj1Index = sortOrder.IndexOf((char)obj1);
var obj2Index = sortOrder.IndexOf((char)obj2);
if(obj1Index == -1 || obj2Index == -1)
{
throw new Exception("character not found");
}
if(obj1Index > obj2Index)
{
return 1;
}
else if (obj1Index == obj2Index)
{
return 0;
}
else
{
return -1;
}
}
}

Finding sub-strings in Java 6

I looked through the String API in Java 6 and I did not find any method for computing how many times a specific sub-string appears within a given String.
For example, I would like to know how many times "is" or "not" appears in the string "noisxxnotyynotxisi".
I can do the long way with a loop, but I would like to know whether there is a simpler way.
Thanks.
Edit: I'm using Java 6.
org.apache.commons.lang.StringUtils.countMatches method could be preferred.
Without using an external library, you can use String.indexOf(String str, int fromIndex); in a loop.
Update This example fully works.
/**
* #author The Elite Gentleman
* #since 31 March 2011
*
*/
public class Test {
private static final String STR = "noisxxnotyynotxisi";
public static int count(String str) {
int count = 0;
int index = -1;
//if (STR.lastIndexOf(str) == -1) {
// return count;
//}
while ((index = STR.indexOf(str, index + 1)) != -1) {
count++;
}
return count;
}
/**
* #param args
*/
public static void main(String[] args) {
// TODO Auto-generated method stub
System.out.println(Test.count("is"));
System.out.println(Test.count("no"));
}
}
You can do this, but a loop would be faster.
String text = "noisxxnotyynotxisinono";
String search = "no";
int count = text.split(search,-1).length-1;
System.out.println(Arrays.toString(text.split(search,-1)));
System.out.println("count= " + count);
prints
[, isxx, tyy, txisi, , ]
count= 5
As you can see this is correct if the text starts or ends with the search value. The -1 argument stops it removing trailing seperators.
You can use a loop with indexOf() which is more efficient, but not as simple.
BTW: Java 5.0 has been EOL since Aug 2007. Perhaps its is time to look at Java 6. (though the docs are very similar)

Is there a circular hash function?

Thinking about this question on testing string rotation, I wondered: Is there was such thing as a circular/cyclic hash function? E.g.
h(abcdef) = h(bcdefa) = h(cdefab) etc
Uses for this include scalable algorithms which can check n strings against each other to see where some are rotations of others.
I suppose the essence of the hash is to extract information which is order-specific but not position-specific. Maybe something that finds a deterministic 'first position', rotates to it and hashes the result?
It all seems plausible, but slightly beyond my grasp at the moment; it must be out there already...
I'd go along with your deterministic "first position" - find the "least" character; if it appears twice, use the next character as the tie breaker (etc). You can then rotate to a "canonical" position, and hash that in a normal way. If the tie breakers run for the entire course of the string, then you've got a string which is a rotation of itself (if you see what I mean) and it doesn't matter which you pick to be "first".
So:
"abcdef" => hash("abcdef")
"defabc" => hash("abcdef")
"abaac" => hash("aacab") (tie-break between aa, ac and ab)
"cabcab" => hash("abcabc") (it doesn't matter which "a" comes first!)
Update: As Jon pointed out, the first approach doesn't handle strings with repetition very well. Problems arise as duplicate pairs of letters are encountered and the resulting XOR is 0. Here is a modification that I believe fixes the the original algorithm. It uses Euclid-Fermat sequences to generate pairwise coprime integers for each additional occurrence of a character in the string. The result is that the XOR for duplicate pairs is non-zero.
I've also cleaned up the algorithm slightly. Note that the array containing the EF sequences only supports characters in the range 0x00 to 0xFF. This was just a cheap way to demonstrate the algorithm. Also, the algorithm still has runtime O(n) where n is the length of the string.
static int Hash(string s)
{
int H = 0;
if (s.Length > 0)
{
//any arbitrary coprime numbers
int a = s.Length, b = s.Length + 1;
//an array of Euclid-Fermat sequences to generate additional coprimes for each duplicate character occurrence
int[] c = new int[0xFF];
for (int i = 1; i < c.Length; i++)
{
c[i] = i + 1;
}
Func<char, int> NextCoprime = (x) => c[x] = (c[x] - x) * c[x] + x;
Func<char, char, int> NextPair = (x, y) => a * NextCoprime(x) * x.GetHashCode() + b * y.GetHashCode();
//for i=0 we need to wrap around to the last character
H = NextPair(s[s.Length - 1], s[0]);
//for i=1...n we use the previous character
for (int i = 1; i < s.Length; i++)
{
H ^= NextPair(s[i - 1], s[i]);
}
}
return H;
}
static void Main(string[] args)
{
Console.WriteLine("{0:X8}", Hash("abcdef"));
Console.WriteLine("{0:X8}", Hash("bcdefa"));
Console.WriteLine("{0:X8}", Hash("cdefab"));
Console.WriteLine("{0:X8}", Hash("cdfeab"));
Console.WriteLine("{0:X8}", Hash("a0a0"));
Console.WriteLine("{0:X8}", Hash("1010"));
Console.WriteLine("{0:X8}", Hash("0abc0def0ghi"));
Console.WriteLine("{0:X8}", Hash("0def0abc0ghi"));
}
The output is now:
7F7D7F7F
7F7D7F7F
7F7D7F7F
7F417F4F
C796C7F0
E090E0F0
A909BB71
A959BB71
First Version (which isn't complete): Use XOR which is commutative (order doesn't matter) and another little trick involving coprimes to combine ordered hashes of pairs of letters in the string. Here is an example in C#:
static int Hash(char[] s)
{
//any arbitrary coprime numbers
const int a = 7, b = 13;
int H = 0;
if (s.Length > 0)
{
//for i=0 we need to wrap around to the last character
H ^= (a * s[s.Length - 1].GetHashCode()) + (b * s[0].GetHashCode());
//for i=1...n we use the previous character
for (int i = 1; i < s.Length; i++)
{
H ^= (a * s[i - 1].GetHashCode()) + (b * s[i].GetHashCode());
}
}
return H;
}
static void Main(string[] args)
{
Console.WriteLine(Hash("abcdef".ToCharArray()));
Console.WriteLine(Hash("bcdefa".ToCharArray()));
Console.WriteLine(Hash("cdefab".ToCharArray()));
Console.WriteLine(Hash("cdfeab".ToCharArray()));
}
The output is:
4587590
4587590
4587590
7077996
You could find a deterministic first position by always starting at the position with the "lowest" (in terms of alphabetical ordering) substring. So in your case, you'd always start at "a". If there were multiple "a"s, you'd have to take two characters into account etc.
I am sure that you could find a function that can generate the same hash regardless of character position in the input, however, how will you ensure that h(abc) != h(efg) for every conceivable input? (Collisions will occur for all hash algorithms, so I mean, how do you minimize this risk.)
You'd need some additional checks even after generating the hash to ensure that the strings contain the same characters.
Here's an implementation using Linq
public string ToCanonicalOrder(string input)
{
char first = input.OrderBy(x => x).First();
string doubledForRotation = input + input;
string canonicalOrder
= (-1)
.GenerateFrom(x => doubledForRotation.IndexOf(first, x + 1))
.Skip(1) // the -1
.TakeWhile(x => x < input.Length)
.Select(x => doubledForRotation.Substring(x, input.Length))
.OrderBy(x => x)
.First();
return canonicalOrder;
}
assuming generic generator extension method:
public static class TExtensions
{
public static IEnumerable<T> GenerateFrom<T>(this T initial, Func<T, T> next)
{
var current = initial;
while (true)
{
yield return current;
current = next(current);
}
}
}
sample usage:
var sequences = new[]
{
"abcdef", "bcdefa", "cdefab",
"defabc", "efabcd", "fabcde",
"abaac", "cabcab"
};
foreach (string sequence in sequences)
{
Console.WriteLine(ToCanonicalOrder(sequence));
}
output:
abcdef
abcdef
abcdef
abcdef
abcdef
abcdef
aacab
abcabc
then call .GetHashCode() on the result if necessary.
sample usage if ToCanonicalOrder() is converted to an extension method:
sequence.ToCanonicalOrder().GetHashCode();
One possibility is to combine the hash functions of all circular shifts of your input into one meta-hash which does not depend on the order of the inputs.
More formally, consider
for(int i=0; i<string.length; i++) {
result^=string.rotatedBy(i).hashCode();
}
Where you could replace the ^= with any other commutative operation.
More examply, consider the input
"abcd"
to get the hash we take
hash("abcd") ^ hash("dabc") ^ hash("cdab") ^ hash("bcda").
As we can see, taking the hash of any of these permutations will only change the order that you are evaluating the XOR, which won't change its value.
I did something like this for a project in college. There were 2 approaches I used to try to optimize a Travelling-Salesman problem. I think if the elements are NOT guaranteed to be unique, the second solution would take a bit more checking, but the first one should work.
If you can represent the string as a matrix of associations so abcdef would look like
a b c d e f
a x
b x
c x
d x
e x
f x
But so would any combination of those associations. It would be trivial to compare those matrices.
Another quicker trick would be to rotate the string so that the "first" letter is first. Then if you have the same starting point, the same strings will be identical.
Here is some Ruby code:
def normalize_string(string)
myarray = string.split(//) # split into an array
index = myarray.index(myarray.min) # find the index of the minimum element
index.times do
myarray.push(myarray.shift) # move stuff from the front to the back
end
return myarray.join
end
p normalize_string('abcdef').eql?normalize_string('defabc') # should return true
Maybe use a rolling hash for each offset (RabinKarp like) and return the minimum hash value? There could be collisions though.

Resources