I've managed to save a model for automatic translation with pytorch and I'm wondering how can I use it to translate input sentences.
I came across an article suggesting to use a class_mapping so I guess that I should use the dictionary available on that github page as python list https://github.com/facebookresearch/fairseq/tree/nllb
I used this line of code to load the model :
model = torch.load(PATH)
model.eval()
So my question is how can I use the model and the dictionary in order to "predict" the translation of a sentence ?
Thank you
Related
I working on NLP problem and try to make text classification with word embedding method. I am training my model with fasttext's train_supervised but is there any ideal or best parameter values for this function that you can advise me also I am using Kfold with some values how can I find best K-fold number in this problem ?
My solution is I am using fasttext's autotune function to find best param values for model to train but is there any possible suggestion to give me ? Following image shows my best params in the model. Finally , I am using fasttext's pretrained word vector model for my training.
Let me answer my own question you can look at the default and optimum parameters values by clicking the following link ;
https://fasttext.cc/docs/en/options.html
and also you can use fasttext's libraries autotune function (Automatic hyperparameter optimization) to find best parameters for your special train and validation dataset by clicking the following link ;
https://fasttext.cc/docs/en/autotune.html
and finally this is the pretrained word vectors provided by fasttext library to utilize in your model's training process also making positive progress for model , in the following link's site they are in the Model section ;
https://fasttext.cc/docs/en/crawl-vectors.html
I would like to use AllenNLP Interpret (code + demo) with a PyTorch classification model trained with HuggingFace (electra base discriminator). Yet, it is not obvious to me, how I can convert my model, and use it in a local allen-nlp demo server.
How should I proceed ?
Thanks in advance
If your task is binary classification, you can look at the BoolQ example in https://github.com/allenai/allennlp-models/blob/main/training_config/classification/boolq_roberta.jsonnet. You can change that configuration to use a different model (such as Electra).
We also just put some new documentation out for the Interpret functionality: https://guide.allennlp.org/interpret
To give you a more specific answer, I'll need to know some more details, like what the task is you're trying to solve, how you trained the original model, etc.
I am using Torchtext in an NLP project. I have a pretrained embedding in my system, which I'd like to use. Therefore, I tried:
my_field.vocab.load_vectors(my_path)
But, apparently, this only accepts the names of a short list of pre-accepted embeddings, for some reason. In particular, I get this error:
Got string input vector "my_path", but allowed pretrained vectors are ['charngram.100d', 'fasttext.en.300d', ..., 'glove.6B.300d']
I found some people with similar problems, but the solutions I can find so far are "change Torchtext source code", which I would rather avoid if at all possible.
Is there any other way in which I can work with my pretrained embedding? A solution that allows to use another Spanish pretrained embedding is acceptable.
Some people seem to think it is not clear what I am asking. So, if the title and final question are not enough: "I need help using a pre-trained Spanish word-embedding in Torchtext".
It turns out there is a relatively simple way to do this without changing Torchtext's source code. Inspiration from this Github thread.
1. Create numpy word-vector tensor
You need to load your embedding so you end up with a numpy array with dimensions (number_of_words, word_vector_length):
my_vecs_array[word_index] should return your corresponding word vector.
IMPORTANT. The indices (word_index) for this array array MUST be taken from Torchtext's word-to-index dictionary (field.vocab.stoi). Otherwise Torchtext will point to the wrong vectors!
Don't forget to convert to tensor:
my_vecs_tensor = torch.from_numpy(my_vecs_array)
2. Load array to Torchtext
I don't think this step is really necessary because of the next one, but it allows to have the Torchtext field with both the dictionary and vectors in one place.
my_field.vocab.set_vectors(my_field.vocab.stoi, my_vecs_tensor, word_vectors_length)
3. Pass weights to model
In your model you will declare the embedding like this:
my_embedding = toch.nn.Embedding(vocab_len, word_vect_len)
Then you can load your weights using:
my_embedding.weight = torch.nn.Parameter(my_field.vocab.vectors, requires_grad=False)
Use requires_grad=True if you want to train the embedding, use False if you want to freeze it.
EDIT: It looks like there is another way that looks a bit easier! The improvement is that apparently you can pass the pre-trained word vectors directly during the vocabulary-building step, so that takes care of steps 1-2 here.
I am currently working on a deep neural network, and I want to make a transfer learning to my model, I have founded a ckpt who where generated from another model, and I want to use this ckpt in my own model, the problem is that my model is completely different "numbre of layer, number of output", my question is how can I use the ckpt in my lowest layer ?
I use Tensorflow
Thanks
What you need is tf.train.Saver class. There is var_list parameter which you could use to set up a correspondence between saved weights and variables in the current graph.
I want to extract features using caffe and train those features using SVM. I have gone through this link: http://caffe.berkeleyvision.org/gathered/examples/feature_extraction.html. This links provides how we can extract features using caffenet. But I want to use Lenet architecture here. I am unable to change this line of command for Lenet:
./build/tools/extract_features.bin models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel examples/_temp/imagenet_val.prototxt fc7 examples/_temp/features 10 leveldb
And also, after extracting the features, how to train these features using SVM? I want to use python for this. For eg: If I get features from this code:
features = net.blobs['pool2'].data.copy()
Then, how can I train these features using SVM by defining my own classes?
You have two questions here:
Extracting features using LeNet
Training an SVM
Extracting features using LeNet
To extract the features from LeNet using the extract_features.bin script you need to have the model file (.caffemodel) and the model definition for testing (.prototxt).
The signature of extract_features.bin is here:
Usage: extract_features pretrained_net_param feature_extraction_proto_file extract_feature_blob_name1[,name2,...] save_feature_dataset_name1[,name2,...] num_mini_batches db_type [CPU/GPU] [DEVICE_ID=0]
So if you take as an example val prototxt file this one (https://github.com/BVLC/caffe/blob/master/models/bvlc_alexnet/train_val.prototxt), you can change it to the LeNet architecture and point it to your LMDB / LevelDB. That should get you most of the way there. Once you did that and get stuck, you can re-update your question or post a comment here so we can help.
Training SVM on top of features
I highly recommend using Python's scikit-learn for training an SVM from the features. It is super easy to get started, including reading in features saved from Caffe's format.
Very lagged reply, but should help.
Not 100% what you want, but I have used the VGG-16 net to extract face features using caffe and perform a accuracy test on a small subset of the LFW dataset. Exactly what you needed is in the code. The code creates classes for training and testing and pushes them into the SVM for classification.
https://github.com/wajihullahbaig/VGGFaceMatching