I am trying to build a powerful image classifier.
But I have an issue. I use CIFRAS-100 dataset, and I trained a model from it.
Issue here that the correct classificatons are equal to 15%.
I tried continuing learn process, but after 2-3 attempts, model has not changed.
Code that I used for training:
import torch
import sys,os
import torchvision
import torchvision.transforms as transforms
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
batch_size = 4
trainset = torchvision.datasets.CIFAR100(root='./dataone', train=True,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size,
shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR100(root='./dataone', train=False,
download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size,
shuffle=False, num_workers=2)
classes = ('aquatic mammals','fish','flowers','food containers','fruit and vegetables','household electrical devices','household furniture','insects','large carnivores','large man-made outdoor things','large natural outdoor scenes','large omnivores and herbivores','medium-sized mammals','non-insect invertebrates','people','reptiles','small mammals','trees','vehicles 1','vehicles 2')
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 100)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = torch.flatten(x, 1) # flatten all dimensions except batch
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
import torch.optim as optim
PATH = "./model.pt"
model = Net()
net = Net()
print(os.path.exists(PATH))
if os.path.exists(PATH):
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
checkpoint = torch.load(PATH)
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
epoch = checkpoint['epoch']
loss = checkpoint['loss']
print("using checkpoint")
#model.eval()
# - or -
model.train()
#criterion = nn.CrossEntropyLoss()
#optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)import torch.optim as optim
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
for epoch in range(2): # loop over the dataset multiple times
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# get the inputs; data is a list of [inputs, labels]
inputs, labels = data
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
print("training..")
# print statistics
#running_loss += loss.item()
#if i % 2000 == 1999: # print every 2000 mini-batches
# print(f'[{epoch + 1}, {i + 1:5d}] loss: {running_loss / 2000:.3f}')
# running_loss = 0.0
print('Finished Training')
#PATH = './cifar_net.pth'
#torch.save(net.state_dict(), PATH)
EPOCH = 5
LOSS = 0.4
torch.save({
'epoch': EPOCH,
'model_state_dict': net.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': LOSS,
}, PATH)```
It's based on PyTorch tutorial about image cassifiers, that can be found [here](https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html).
I took code for resuming training from [here.](https://pytorch.org/tutorials/recipes/recipes/saving_and_loading_a_general_checkpoint.html)
Code that I used for testing model:
import torch
import torchvision
import torchvision.transforms as transforms
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
batch_size = 4
trainset = torchvision.datasets.CIFAR100(root='./dataone', train=False,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size,
shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR100(root='./dataone', train=False,
download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size,
shuffle=False, num_workers=2)
classes = ('aquatic mammals','fish','flowers','food containers','fruit and vegetables','household electrical devices','household furniture','insects','large carnivores','large man-made outdoor things','large natural outdoor scenes','large omnivores and herbivores','medium-sized mammals','non-insect invertebrates','people','reptiles','small mammals','trees','vehicles 1','vehicles 2')
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 100)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = torch.flatten(x, 1) # flatten all dimensions except batch
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
PATH = './cifar_net.pth'
net.load_state_dict(torch.load(PATH))
correct = 0
total = 0
# since we're not training, we don't need to calculate the gradients for our outputs
with torch.no_grad():
for data in testloader:
images, labels = data
# calculate outputs by running images through the network
outputs = net(images)
# the class with the highest energy is what we choose as prediction
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print(correct)
print(total)
print(f'Accuracy of the network on the 100000 test images: {100 * correct // total} %')```
It's from the same image classifier tutorial by PyTorch. I added printing total and correct detected images for testing.
How can I increase accuracy, so it will be at least around 50-70%?
Or is this normal, and it means that these 15% are incorrect?
Please help.
Have you tried increasing the number of epochs? Training usually requires hundreds to thousands of iterations to obtain good results.
You could also improve the architecture by continuing the convolutional layers until you are left with a 1×1×N image where N is the number of filters in the final convolution. Then flatten and add linear layer(s). Batch Normalization and LeakyReLU activation before pooling layers may also help. Finally, you should use Softmax activation on the output since you are dealing with a classifier.
I highly recommend looking into popular classifiers such as VGG and ResNet. ResNet in particular has a feature called "residual/skip connections" that passes a copy of the output of a layer forward down the line to compensate for feature loss.
Could you provide accuracies and loss plots so we can understand better what is happening in the training (or maybe the list of accuracies and losses during training).
Also, it is a good practice to compute the validation accuracy and loss after every epoch to monitor the behaviour of the network on unseen data.
Although, as it has been said by Xynias, there are some improvements you could do on your architecture I believe the first step would be to investigate from the accuracies and losses.
Given CIFAR100 having 100 classes, this is expectable. You'll need a resonably complex network to perform well on this task. Definitely more feature maps, starting with 64 or more channels.
This Q&D architecture surpasses 50% overall accuracy after 10 epochs or so (using learning rate of 0.1 and batch size of 256, I also added RandomHorizontalFlip() transform):
class Net(nn.Module):
def __init__(self):
super().__init__()
self.layers = nn.Sequential(
nn.Conv2d(3, 128, 3, stride=1, padding=1),
nn.ReLU(),
nn.Conv2d(128, 128, 3, stride=1, padding=1),
nn.ReLU(),
nn.AvgPool2d(2, 2),
nn.Conv2d(128, 256, 3, stride=1, padding=1),
nn.ReLU(),
nn.Conv2d(256, 256, 3, stride=1, padding=1),
nn.ReLU(),
nn.AvgPool2d(2, 2),
nn.Flatten(),
nn.Dropout(0.5),
nn.Linear(16384, 100),
)
def forward(self, x):
return self.layers(x)
For a better result you may try implementing something ResNet-like, or utilize a premade (and possibly pretrained) model, for example, using timm:
import timm
net = timm.create_model('resnet18d', pretrained=True, num_classes=100)
It achieves your target metrics pretty fast with the same parameters as above.
Related
So I'm studiying pytorch coming from a background with tensorflow.
I'm trying to replicate a simple convnet, that I've developed with success in tensorflow, to classify cat vs dogs images.
In pytorch I see some strange behaviors:
Using a Learning Rate of 0.001 make the CNet predicting only 0 after the first batch (might be exploding gradients?)
Using a Learning Rate of 0.0005 gives a smooth learning curve and the CNet converge
Can anyone help me to understand what I'm doing wrong? that the code:
import pathlib
import torch
import torch.nn.functional as F
import torchvision
from torch.utils.data.dataloader import DataLoader
import numpy as np
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class CNet(torch.nn.Module):
def __init__(self):
super(CNet, self).__init__() #input is 180x180 image
self.conv1 = torch.nn.Conv2d(3, 32, 3) # out -> 178x178x32
self.conv2 = torch.nn.Conv2d(32, 64, 3)
self.conv3 = torch.nn.Conv2d(64, 128, 3)
self.conv4 = torch.nn.Conv2d(128, 256, 3)
self.conv5 = torch.nn.Conv2d(256, 256, 3)
self.flatten = torch.nn.Flatten()
#self.fc = torch.nn.LazyLinear(1)
self.fc = torch.nn.Linear(7*7*256, 1)
def forward(self, x):
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
x = F.max_pool2d(F.relu(self.conv2(x)), (2, 2))
x = F.max_pool2d(F.relu(self.conv3(x)), (2, 2))
x = F.max_pool2d(F.relu(self.conv4(x)), (2, 2))
x = F.relu(self.conv5(x))
x = self.flatten(x)
o = torch.sigmoid(self.fc(x))
return o
def train(model : CNet, train_data : DataLoader, criterion, optimizer : torch.optim.Optimizer, epochs = 10, validation_data : DataLoader = None):
losses = []
for epoch in range(epochs):
epoch_loss = 0.0
running_loss = 0.0
for i, data in enumerate(train_data, 0):
imgs, labels = data
imgs, labels = imgs.to(device), labels.to(device, dtype=torch.float)
labels = labels.unsqueeze(-1)
# run
output = net(imgs)
# zero out accumulated grads
loss = criterion(output, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
running_loss += loss.item()
epoch_loss += loss.item()
#if i % 50 == 49:
# print(f'[{epoch+1}, {i:5d}] loss: {running_loss / 50.0:.3f}')
# running_loss = 0.0
losses.append(epoch_loss / len(train_data.dataset))
print(f'[{epoch+1}, {epochs:5d}] loss: {losses[-1]:.3f}')
return losses
if __name__=="__main__":
transforms = torchvision.transforms.Compose([
torchvision.transforms.Resize((180, 180)),
torchvision.transforms.ToTensor(),
])
dataset_dir = pathlib.Path("E:\Datasets\\torch\Cat_Dog\cats_vs_dogs_small")
train_data = torchvision.datasets.ImageFolder(dataset_dir / "train", transform=transforms)
validation_data = torchvision.datasets.ImageFolder(dataset_dir / "validation", transform=transforms)
test_data = torchvision.datasets.ImageFolder(dataset_dir / "test", transform=transforms)
train_data_loader = DataLoader(train_data, batch_size=32, shuffle=True, num_workers=2, persistent_workers=True, pin_memory=True)
validation_data_loader = DataLoader(validation_data, batch_size=32, num_workers=2, shuffle=True, pin_memory=True)
test_data_loader = DataLoader(test_data, batch_size=32, shuffle=True, pin_memory=True, num_workers=2)
import matplotlib.pyplot as plt
#plt.figure()
#for i in range(1, 10):
# plt.subplot(3, 3, i)
# plt.axis('off')
# rand_idx = np.random.random_integers(0, len(train_data))
# plt.imshow(np.moveaxis(test_data[rand_idx][0].numpy(), 0, 2))
#plt.show()
net = CNet()
net = net.to(device)
criterion = torch.nn.BCELoss()
optimizer = torch.optim.RMSprop(net.parameters(), 0.001)
net.train()
# TODO save best model
losses = train(net, train_data_loader, criterion, optimizer, epochs=30)
epochs = range(1, len(losses) + 1)
plt.plot(epochs, losses, 'bo', label='Training Loss')
plt.show()
print('Training Finished')
correct_count, all_count = 0, 0
for images,labels in test_data_loader:
images,labels = images.to(device), labels.to(device, dtype=torch.float)
with torch.no_grad():
ps = net(images)
pred_label = (ps > 0.5).to(torch.float)
true_label = labels.unsqueeze(1)
correct_count += (pred_label == true_label).sum().item()
all_count += len(labels)
print("Number Of Images Tested =", all_count)
print("\nModel Accuracy =", (correct_count/all_count))
and here some screenshot of the loss for each point:
LR=0.001 (not convering on pytorch, converging on tensorflow)
LR=0.0005 (converging in 30 epochs) [I know that the validation loss is not 0, accuracy is ~70% but is expected]
As you can see the loss on the two experiment are very different in scale. What might cause that such a weird behavior? I call it 'wierd' cause I never seen that happen on tensorflow.
Is typicall such different behavior between those 2 framework? or am I loosing something?
I'm working on a project where I need to classify image sequences of some plants (growing over time). I tried implementing a CNN-LSTM with a pretrained ResNet18 as a feature extractor and then feeding those feature sequences to the LSTM.
The issue is that I'm not used to train LSTMs, and I'm afraid I'm doing something wrong. I made a clear architecture and everything seems ok, but the loss is not decreasing.
here's the architecture:
class RecurrentCNN(nn.Module):
def __init__(self, embed_dim, hidden_size, num_layers, num_classes):
super(RecurrentCNN, self).__init__()
self.embed_dim = embed_dim
self.hidden_size = hidden_size
self.num_layers = num_layers
self.num_classes = num_classes
self.cnn = torchvision.models.resnet18(weights='DEFAULT')
self.cnn.fc = nn.Sequential(
nn.Linear(in_features=512, out_features=self.embed_dim, bias=False),
nn.BatchNorm1d(num_features=self.embed_dim)
)
self.lstm = nn.LSTM(input_size=embed_dim, hidden_size=hidden_size, num_layers=num_layers, batch_first=True)
self.fc = nn.Sequential(
nn.Linear(hidden_size, hidden_size),
nn.ReLU(),
nn.BatchNorm1d(num_features=hidden_size),
nn.Dropout(0.2),
nn.Linear(hidden_size, num_classes)
)
def forward(self, x):
batch_size, img_size = x.shape[0], x.shape[2:]
x = x.reshape(-1, *img_size) # i merge the batch_size and num_seq in order to feed everything to the cnn
x = self.cnn(x)
x = x.reshape(batch_size, -1, self.embed_dim) # then i comeback the original shape
# lstm part
h_0 = torch.autograd.Variable(torch.zeros(self.num_layers, x.size(0), self.hidden_size)).to(device)
c_0 = torch.autograd.Variable(torch.zeros(self.num_layers, x.size(0), self.hidden_size)).to(device)
x, (hn, cn) = self.lstm(x, (h_0, c_0))
x = x[:, -1, :]
x = self.fc(x)
return x
I have 40 classes to output. My sequences are of different lengths, so I was forced to pad with some black images sometimes! (mean seq length: 39, max: 55, min: 15)
I'm feeding the model with sequences of shape (batch_size, seq_len=55, 3, 112, 112).
It may be wrong but for now I just want to make sure that the model is at least working correctly, then I'll probably change the strategy of learning.
here's the training code:
EPOCHS = 10
BATCH_SIZE = 4
dataset = PlantDataset(data_path, max_sequence_len=55, transform=None)
train_loader = torch.utils.data.DataLoader(
dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=0, drop_last=True
)
rcnn = RecurrentCNN(embed_dim=128, hidden_size=256, num_layers=2, num_classes=len(class_list)).to(device)
criterion = nn.CrossEntropyLoss().to(device)
optimizer = torch.optim.SGD(rcnn.parameters(), lr=0.0001)
loss_am = list() #AverageMeter()
rcnn.train()
for epoch in range(EPOCHS):
progress = tqdm(range(dataset.__len__() * BATCH_SIZE))
for i, data in enumerate(train_loader):
optimizer.zero_grad()
sequences, targets = data
sequences, targets = sequences.to(device, dtype=torch.float), torch.Tensor(targets).to(device)
output = torch.nn.functional.log_softmax(rcnn(sequences), dim=1)
loss_value = criterion(output, targets)
loss_value.backward()
optimizer.step()
with torch.no_grad():
loss_am.append(loss_value.item())
progress.update(i)
progress.set_description('Epoch: {}, Loss: {:.4f}'.format(epoch, loss_value.item()))
progress.close()
The loss on each batch goes like
3.53 => 4.22 => 4.62 => 3.83 => 3.75 => 3.80 => 3.70, etc
Do you have any idea ?
I am facing the same issue. But I am able to find the problem. Since I am using the Image-sequences dataset, my model is not able to predict the tokens, instead, I ended up with a whole set of garbage tokens. I am still trying to figure out why this is happening.
I am using a simple autoencoder to learn images from the FashionMnist dataset. I have preprocessed the dataset by grayscaling and normalizing it. I did not make the network too deep, to prevent it from creating a direct mapping.
Here's my PyTorch code -
import torch
import torchvision as tv
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
from torch import nn
import os
from torchviz import make_dot
transforms = tv.transforms.Compose([tv.transforms.Grayscale(num_output_channels=1)])
trainset = tv.datasets.FashionMNIST(root='./data', train=True,
download=True, transform=transforms)
PATH = './ae.pth'
data = trainset.data.float()
data = data/255
# print(trainset.data.shape)
plt.imshow(trainset.data[0], cmap = 'gray')
plt.show()
class NeuralNetwork(nn.Module):
def __init__(self):
super(NeuralNetwork, self).__init__()
self.flatten = nn.Flatten()
self.encode = nn.Sequential(
nn.Linear(28*28, 512),
nn.ReLU(),
nn.Linear(512, 30),
nn.ReLU()
)
self.decode = nn.Sequential(
nn.Linear(30, 512),
nn.ReLU(),
nn.Linear(512, 28*28),
nn.Sigmoid()
)
def forward(self, x):
x = self.flatten(x)
encoded = self.encode(x)
decoded = self.decode(encoded)
return decoded
if(os.path.exists(PATH)):
print("Loading data on cpu")
device = torch.device('cpu')
model = NeuralNetwork()
model.load_state_dict(torch.load(PATH, map_location=device))
else:
device = "cuda" if torch.cuda.is_available() else "cpu"
data = data.to(device)
print(f"Using device = {device}")
model = NeuralNetwork().to(device)
# print(model)
lossFn = nn.BCELoss()
optimizer = torch.optim.SGD(model.parameters(), lr = 1e-3)
for epoch in range(1000):
print("Epoch = ", epoch)
optimizer.zero_grad()
outputs = model(data)
loss = lossFn(outputs, data.reshape(-1, 784))
loss.backward()
optimizer.step()
torch.save(model.state_dict(), PATH)
data = data.to("cpu")
model = model.to("cpu")
pred = model(data)
pred = pred.reshape(-1, 28, 28)
# print(pred.shape)
plt.imshow(pred.detach().numpy()[0], cmap = 'gray')
plt.show()
For testing, I am inputting the following image -
However, I get this as output -
I had an intuition that there was an issue with your loss function. When working with images, distance-based losses such as L1 or L2 losses work really well, as you are essentially measuring how far-away your predictions are from the ground-truth images. This was what I had observed as well, as the loss wasn't converging with BCE and it was rather oscillating.
I rewrote the entire thing and replaced BCE loss with MSE Loss and in just 50 epochs, the loss has gone down considerably, and it is still going down.
Here is the prediction after just 50 epochs -
The ground-truth image is -
I believe that you can get the loss down much more if you train for longer.
Here is the full code. I used a dataloader for batchifying and processing the data.
I also changed the transformations so that the resulting data is a torch tensor.
import torch
import torchvision as tv
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
from torch import nn
from torch.utils.data import DataLoader
transforms = tv.transforms.Compose([
transforms.Grayscale(num_output_channels=1),
transforms.ToTensor()
])
trainset = tv.datasets.FashionMNIST(root='./data', train=True,
download=True, transform=transforms)
loader = DataLoader(trainset, batch_size=32, num_workers=1, shuffle=True)
class NeuralNetwork(nn.Module):
def __init__(self):
super(NeuralNetwork, self).__init__()
self.flatten = nn.Flatten()
self.encode = nn.Sequential(
nn.Linear(28*28, 512),
nn.ReLU(),
nn.Linear(512, 30),
nn.ReLU()
)
self.decode = nn.Sequential(
nn.Linear(30, 512),
nn.ReLU(),
nn.Linear(512, 28*28),
nn.Sigmoid()
)
def forward(self, x):
x = self.flatten(x)
encoded = self.encode(x)
decoded = self.decode(encoded)
return decoded
model = NeuralNetwork().to(device)
lossFn = nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr = 1e-2)
epochs = 50
for epoch in range(epochs):
for images, labels in loader:
optimizer.zero_grad()
images, labels = images.to(device), labels.to(device)
outputs = model(images)
loss = lossFn(outputs, images.reshape(-1, 28*28))
loss.backward()
optimizer.step()
print(f'Loss : {loss.item()}')
print(f'Epochs done : {epoch}')
Here is some inference code -
# infer on some test data
testset = tv.datasets.FashionMNIST(root='./data', train=False,
download=False, transform=transforms)
testloader = DataLoader(testset, shuffle=False, batch_size=32, num_workers=1)
test_images, test_labels = next(iter(testloader))
test_images = test_images.to(device)
predictions = model(test_images)
prediction = predictions[0]
prediction = prediction.view(1, 28, 28)
prediction = prediction.detach().cpu().numpy()
prediction = prediction.transpose(1, 2, 0)
# plot the prediction
plt.imshow(prediction, cmap = 'gray')
plt.show()
# plot the actual image
test_image = test_images[0]
test_image = test_image.detach().cpu().numpy()
test_image = test_image.transpose(1, 2, 0)
plt.imshow(test_image, cmap='gray')
plt.show()
This is the loss going down --
Epochs done : 39
Loss : 0.04641226679086685
Epochs done : 40
Loss : 0.04445071145892143
Epochs done : 41
Loss : 0.05033266171813011
Epochs done : 42
Loss : 0.04813298210501671
Epochs done : 43
Loss : 0.0474831722676754
Epochs done : 44
Loss : 0.044186390936374664
Epochs done : 45
Loss : 0.049083154648542404
Epochs done : 46
Loss : 0.04645842686295509
Epochs done : 47
Loss : 0.04586248844861984
Epochs done : 48
Loss : 0.0467853844165802
Epochs done : 49
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import matplotlib.pyplot as plt
import numpy as np
import torch.optim as optim
class NeuralNetwork(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(1, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 3)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = torch.flatten(x, 1) # flatten all dimensions except batch
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = NeuralNetwork()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
from torchvision import datasets, transforms
from torch.utils.data import DataLoader, random_split
def UploadData(path, train):
#set up transforms for train and test datasets
train_transforms = transforms.Compose([transforms.Grayscale(num_output_channels=1), transforms.Resize(255), transforms.CenterCrop(224), transforms.RandomRotation(30),
transforms.RandomHorizontalFlip(), transforms.transforms.ToTensor()])
valid_transforms = transforms.Compose([transforms.Grayscale(num_output_channels=1), transforms.Resize(255), transforms.CenterCrop(224), transforms.RandomRotation(30),
transforms.RandomHorizontalFlip(), transforms.transforms.ToTensor()])
test_transforms = transforms.Compose([transforms.Grayscale(num_output_channels=1), transforms.Resize(255), transforms.CenterCrop(224), transforms.ToTensor()])
#set up datasets from Image Folders
train_dataset = datasets.ImageFolder(path + '/train', transform=train_transforms)
valid_dataset = datasets.ImageFolder(path + '/validation', transform=valid_transforms)
test_dataset = datasets.ImageFolder(path + '/test', transform=test_transforms)
#set up dataloaders with batch size of 32
trainloader = torch.utils.data.DataLoader(train_dataset, batch_size=32, shuffle=True)
validloader = torch.utils.data.DataLoader(valid_dataset, batch_size=32, shuffle=True)
testloader = torch.utils.data.DataLoader(test_dataset, batch_size=32, shuffle=True)
return trainloader, validloader, testloader
trainloader, validloader, testloader = UploadData("/home/lns/research/dataset", True)
epochs = 5
min_valid_loss = np.inf
for e in range(epochs):
train_loss = 0.0
for data, labels in trainloader:
# Transfer Data to GPU if available
if torch.cuda.is_available():
print("using GPU for data")
data, labels = data.cuda(), labels.cuda()
# Clear the gradients
optimizer.zero_grad()
# Forward Pass
target = net(data)
# Find the Loss
loss = criterion(target,labels)
# Calculate gradients
loss.backward()
# Update Weights
optimizer.step()
# Calculate Loss
train_loss += loss.item()
valid_loss = 0.0
model.eval() # Optional when not using Model Specific layer
for data, labels in validloader:
# Transfer Data to GPU if available
if torch.cuda.is_available():
print("using GPU for data")
data, labels = data.cuda(), labels.cuda()
# Forward Pass
target = net(data)
# Find the Loss
loss = criterion(target,labels)
# Calculate Loss
valid_loss += loss.item()
print('Epoch ',e+1, '\t\t Training Loss: ',train_loss / len(trainloader),' \t\t Validation Loss: ',valid_loss / len(validloader))
if min_valid_loss > valid_loss:
print("Validation Loss Decreased(",min_valid_loss,"--->",valid_loss,") \t Saving The Model")
min_valid_loss = valid_loss
# Saving State Dict
torch.save(net.state_dict(), '/home/lns/research/MODEL.pth')
After searching a lot i am asking for help. Can someone help me
understand why this error is occuring in backward propagation.
i followed pytorch cnn tutorail and geeksforgeeks tutorial
dataset is x ray images transformed into grayscale and resize to 255
Is my neural network is wrong or data is not processed correctly?
This is a size mismmatch between the output of your CNN and the number of neurons on on your first fully-connected layer. Because of missing padding, the number of elements when flattened is 16*4*4 i.e. 256 (and not 16*5*5):
self.fc1 = nn.Linear(256, 120)
Once modified, the model will run correctly:
>>> model = NeuralNetwork()
>>> model(torch.rand(1, 1, 28, 28)).shape
torch.Size([1, 3])
Alternatively, you can use an nn.LazyLinear which will deduce the in_feature argument during the very first inference based on its input shape.
self.fc1 = nn.LazyLinear(120)
Here's a simple neural network, where I’m trying to penalize the norm of activation gradients:
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 32, kernel_size=5)
self.conv2 = nn.Conv2d(32, 64, kernel_size=5)
self.pool = nn.MaxPool2d(2, 2)
self.relu = nn.ReLU()
self.linear = nn.Linear(64 * 5 * 5, 10)
def forward(self, input):
conv1 = self.conv1(input)
pool1 = self.pool(conv1)
self.relu1 = self.relu(pool1)
self.relu1.retain_grad()
conv2 = self.conv2(relu1)
pool2 = self.pool(conv2)
relu2 = self.relu(pool2)
self.relu2 = relu2.view(relu2.size(0), -1)
self.relu2.retain_grad()
return self.linear(relu2)
model = Net()
optimizer = torch.optim.SGD(model.parameters(), lr=0.001)
for i in range(1000):
output = model(input)
loss = nn.CrossEntropyLoss()(output, label)
optimizer.zero_grad()
loss.backward(retain_graph=True)
grads = torch.autograd.grad(loss, [model.relu1, model.relu2], create_graph=True)
grad_norm = 0
for grad in grads:
grad_norm += grad.pow(2).sum()
grad_norm.backward()
optimizer.step()
However, it does not produce the desired regularization effect. If I do the same thing for weights (instead of activations), it works well. Am I doing this right (in terms of pytorch machinery)? Specifically, what happens in grad_norm.backward() call? I just want to make sure the weight gradients are updated, and not activation gradients. Currently, when I print out gradients for weights and activations immediately before and after that line, both change - so I’m not sure what’s going on.
I think your code ends up computing some of the gradients twice in each step. I also suspect it actually never zeroes out the activation gradients, so they accumulate across steps.
In general:
x.backward() computes gradient of x wrt. computation graph leaves (e.g. weight tensors and other variables), as well as wrt. nodes explicitly marked with retain_grad(). It accumulates the computed gradient in tensors' .grad attributes.
autograd.grad(x, [y, z]) returns gradient of x wrt. y and z regardless of whether they would normally retain grad or not. By default, it will also accumulate gradient in all leaves' .grad attributes. You can prevent this by passing only_inputs=True.
I prefer to use backward() only for the optimization step, and autograd.grad() whenever my goal is to obtain "reified" gradients as intermediate values for another computation. This way, I can be sure that no unwanted gradients remain lying around in tensors' .grad attributes after I'm done with them.
import torch
from torch import nn
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 32, kernel_size=5)
self.conv2 = nn.Conv2d(32, 64, kernel_size=5)
self.pool = nn.MaxPool2d(2, 2)
self.relu = nn.ReLU()
self.linear = nn.Linear(64 * 5 * 5, 10)
def forward(self, input):
conv1 = self.conv1(input)
pool1 = self.pool(conv1)
self.relu1 = self.relu(pool1)
conv2 = self.conv2(self.relu1)
pool2 = self.pool(conv2)
self.relu2 = self.relu(pool2)
relu2 = self.relu2.view(self.relu2.size(0), -1)
return self.linear(relu2)
model = Net()
optimizer = torch.optim.SGD(model.parameters(), lr=0.001)
grad_penalty_weight = 10.
for i in range(1000000):
# Random input and labels; we're not really learning anything
input = torch.rand(1, 3, 32, 32)
label = torch.randint(0, 10, (1,))
output = model(input)
loss = nn.CrossEntropyLoss()(output, label)
# This is where the activation gradients are computed
# only_inputs is optional here, since we're going to call optimizer.zero_grad() later
# But it makes clear that we're *only* interested in the activation gradients at this point
grads = torch.autograd.grad(loss, [model.relu1, model.relu2], create_graph=True, only_inputs=True)
grad_norm = 0
for grad in grads:
grad_norm += grad.pow(2).sum()
optimizer.zero_grad()
loss = loss + grad_norm * grad_penalty_weight
loss.backward()
optimizer.step()
This code appears to work, in that the activation gradients do get smaller.
I cannot comment on the viability of this technique as a regularization method.