Pandas groupby first element in tuple and according to bins - python-3.x

I have a series in a dataframe that contains lists of tuples of various lengths after zipping two series together. Eg.
df['lists']
[(0.0, 0), (1.7, 0.28095163296378495), (7.4, 1.12693228043272953), (18.1, 3.053019684863041594), (1.4, 0.053019684863041594), (1.5, 0.01985536)]
[(7.2, 0.14417851715463678), (0.0, 0), (1.5, 0.013) (6.1, 5.15851278579066022)]
I also have created bins.
bins = [0.1,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2.0,2.1,2.2,2.3,2.4,2.5,2.6,2.7,2.8,2.9,3.0,3.2,3.4,3.6,3.8,4.0,4.5,5.0,5.5,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.0,21.0,22.0,23.0,24.0,25.0,30.0,35.0,40.0,50.0,60.0,70.0,80.0,90.0,100.0,110.0,125.0,150.0,175.0,200.0,250.0,500.0]
I want to groupby the first element in the tuple according to the bins and exclude any tuple where the element is zero. This is so I can find the mean or do some other calculations on the second element grouped into these bins. Eg.
1.3 NaN
1.4 0.053019684863041594
1.5 0.01642768
1.6 NaN
...
7.0 0.6355553987936832
I can use the explode() method to separate out the lists but cannot figure it out from there.
Help is greatly appreciated.

Managed to solve this with a little help from #mozway. Needed a small tweak but it was my fault.
For posterity:
df2 = pd.DataFrame(df['lists'].explode().to_list(), columns=['col1', 'col2'])
out = (df2.loc[df2['col2'].ne(0)].assign(bin=lambda d: pd.cut(d['col2'], bins=bins))).groupby('bin')['col2'].mean()

Assuming s the input Series, you can use:
bins = [0.1,1.3,1.4,1.5,1.6,1.7]
df = pd.DataFrame(s.explode().to_list(),
columns=['col1', 'col2'])
out = (df
.loc[df['col1'].ne(0)]
.assign(bin=lambda d: pd.cut(d['col2'], bins=bins))
)
output:
col1 col2 bin
1 1.8 0.280952 (0.1, 1.3]
2 7.4 1.126932 (0.1, 1.3]
3 18.1 3.053020 NaN
4 7.2 0.144179 (0.1, 1.3]
6 6.1 5.158513 NaN
With aggregation:
out = (df
.loc[df['col1'].ne(0)]
.assign(bin=lambda d: pd.cut(d['col2'], bins=bins))
.groupby('bin')['col1'].mean()
)
output:
bin
(0.1, 1.3] 5.466667
(1.3, 1.4] NaN
(1.4, 1.5] NaN
(1.5, 1.6] NaN
(1.6, 1.7] NaN
Name: col1, dtype: float64
Used input:
s = pd.Series([[(0.0, 0), (1.8, 0.28095163296378495), (7.4, 1.1269322804327295), (18.1, 3.0530196848630418)],
[(7.2, 0.14417851715463678), (0.0, 0), (6.1, 5.15851278579066)]])

Related

Anyone know how to write in a short way the folowing code [duplicate]

I created a DataFrame from a list of lists:
table = [
['a', '1.2', '4.2' ],
['b', '70', '0.03'],
['x', '5', '0' ],
]
df = pd.DataFrame(table)
How do I convert the columns to specific types? In this case, I want to convert columns 2 and 3 into floats.
Is there a way to specify the types while converting the list to DataFrame? Or is it better to create the DataFrame first and then loop through the columns to change the dtype for each column? Ideally I would like to do this in a dynamic way because there can be hundreds of columns, and I don't want to specify exactly which columns are of which type. All I can guarantee is that each column contains values of the same type.
You have four main options for converting types in pandas:
to_numeric() - provides functionality to safely convert non-numeric types (e.g. strings) to a suitable numeric type. (See also to_datetime() and to_timedelta().)
astype() - convert (almost) any type to (almost) any other type (even if it's not necessarily sensible to do so). Also allows you to convert to categorial types (very useful).
infer_objects() - a utility method to convert object columns holding Python objects to a pandas type if possible.
convert_dtypes() - convert DataFrame columns to the "best possible" dtype that supports pd.NA (pandas' object to indicate a missing value).
Read on for more detailed explanations and usage of each of these methods.
1. to_numeric()
The best way to convert one or more columns of a DataFrame to numeric values is to use pandas.to_numeric().
This function will try to change non-numeric objects (such as strings) into integers or floating-point numbers as appropriate.
Basic usage
The input to to_numeric() is a Series or a single column of a DataFrame.
>>> s = pd.Series(["8", 6, "7.5", 3, "0.9"]) # mixed string and numeric values
>>> s
0 8
1 6
2 7.5
3 3
4 0.9
dtype: object
>>> pd.to_numeric(s) # convert everything to float values
0 8.0
1 6.0
2 7.5
3 3.0
4 0.9
dtype: float64
As you can see, a new Series is returned. Remember to assign this output to a variable or column name to continue using it:
# convert Series
my_series = pd.to_numeric(my_series)
# convert column "a" of a DataFrame
df["a"] = pd.to_numeric(df["a"])
You can also use it to convert multiple columns of a DataFrame via the apply() method:
# convert all columns of DataFrame
df = df.apply(pd.to_numeric) # convert all columns of DataFrame
# convert just columns "a" and "b"
df[["a", "b"]] = df[["a", "b"]].apply(pd.to_numeric)
As long as your values can all be converted, that's probably all you need.
Error handling
But what if some values can't be converted to a numeric type?
to_numeric() also takes an errors keyword argument that allows you to force non-numeric values to be NaN, or simply ignore columns containing these values.
Here's an example using a Series of strings s which has the object dtype:
>>> s = pd.Series(['1', '2', '4.7', 'pandas', '10'])
>>> s
0 1
1 2
2 4.7
3 pandas
4 10
dtype: object
The default behaviour is to raise if it can't convert a value. In this case, it can't cope with the string 'pandas':
>>> pd.to_numeric(s) # or pd.to_numeric(s, errors='raise')
ValueError: Unable to parse string
Rather than fail, we might want 'pandas' to be considered a missing/bad numeric value. We can coerce invalid values to NaN as follows using the errors keyword argument:
>>> pd.to_numeric(s, errors='coerce')
0 1.0
1 2.0
2 4.7
3 NaN
4 10.0
dtype: float64
The third option for errors is just to ignore the operation if an invalid value is encountered:
>>> pd.to_numeric(s, errors='ignore')
# the original Series is returned untouched
This last option is particularly useful for converting your entire DataFrame, but don't know which of our columns can be converted reliably to a numeric type. In that case, just write:
df.apply(pd.to_numeric, errors='ignore')
The function will be applied to each column of the DataFrame. Columns that can be converted to a numeric type will be converted, while columns that cannot (e.g. they contain non-digit strings or dates) will be left alone.
Downcasting
By default, conversion with to_numeric() will give you either an int64 or float64 dtype (or whatever integer width is native to your platform).
That's usually what you want, but what if you wanted to save some memory and use a more compact dtype, like float32, or int8?
to_numeric() gives you the option to downcast to either 'integer', 'signed', 'unsigned', 'float'. Here's an example for a simple series s of integer type:
>>> s = pd.Series([1, 2, -7])
>>> s
0 1
1 2
2 -7
dtype: int64
Downcasting to 'integer' uses the smallest possible integer that can hold the values:
>>> pd.to_numeric(s, downcast='integer')
0 1
1 2
2 -7
dtype: int8
Downcasting to 'float' similarly picks a smaller than normal floating type:
>>> pd.to_numeric(s, downcast='float')
0 1.0
1 2.0
2 -7.0
dtype: float32
2. astype()
The astype() method enables you to be explicit about the dtype you want your DataFrame or Series to have. It's very versatile in that you can try and go from one type to any other.
Basic usage
Just pick a type: you can use a NumPy dtype (e.g. np.int16), some Python types (e.g. bool), or pandas-specific types (like the categorical dtype).
Call the method on the object you want to convert and astype() will try and convert it for you:
# convert all DataFrame columns to the int64 dtype
df = df.astype(int)
# convert column "a" to int64 dtype and "b" to complex type
df = df.astype({"a": int, "b": complex})
# convert Series to float16 type
s = s.astype(np.float16)
# convert Series to Python strings
s = s.astype(str)
# convert Series to categorical type - see docs for more details
s = s.astype('category')
Notice I said "try" - if astype() does not know how to convert a value in the Series or DataFrame, it will raise an error. For example, if you have a NaN or inf value you'll get an error trying to convert it to an integer.
As of pandas 0.20.0, this error can be suppressed by passing errors='ignore'. Your original object will be returned untouched.
Be careful
astype() is powerful, but it will sometimes convert values "incorrectly". For example:
>>> s = pd.Series([1, 2, -7])
>>> s
0 1
1 2
2 -7
dtype: int64
These are small integers, so how about converting to an unsigned 8-bit type to save memory?
>>> s.astype(np.uint8)
0 1
1 2
2 249
dtype: uint8
The conversion worked, but the -7 was wrapped round to become 249 (i.e. 28 - 7)!
Trying to downcast using pd.to_numeric(s, downcast='unsigned') instead could help prevent this error.
3. infer_objects()
Version 0.21.0 of pandas introduced the method infer_objects() for converting columns of a DataFrame that have an object datatype to a more specific type (soft conversions).
For example, here's a DataFrame with two columns of object type. One holds actual integers and the other holds strings representing integers:
>>> df = pd.DataFrame({'a': [7, 1, 5], 'b': ['3','2','1']}, dtype='object')
>>> df.dtypes
a object
b object
dtype: object
Using infer_objects(), you can change the type of column 'a' to int64:
>>> df = df.infer_objects()
>>> df.dtypes
a int64
b object
dtype: object
Column 'b' has been left alone since its values were strings, not integers. If you wanted to force both columns to an integer type, you could use df.astype(int) instead.
4. convert_dtypes()
Version 1.0 and above includes a method convert_dtypes() to convert Series and DataFrame columns to the best possible dtype that supports the pd.NA missing value.
Here "best possible" means the type most suited to hold the values. For example, this a pandas integer type, if all of the values are integers (or missing values): an object column of Python integer objects are converted to Int64, a column of NumPy int32 values, will become the pandas dtype Int32.
With our object DataFrame df, we get the following result:
>>> df.convert_dtypes().dtypes
a Int64
b string
dtype: object
Since column 'a' held integer values, it was converted to the Int64 type (which is capable of holding missing values, unlike int64).
Column 'b' contained string objects, so was changed to pandas' string dtype.
By default, this method will infer the type from object values in each column. We can change this by passing infer_objects=False:
>>> df.convert_dtypes(infer_objects=False).dtypes
a object
b string
dtype: object
Now column 'a' remained an object column: pandas knows it can be described as an 'integer' column (internally it ran infer_dtype) but didn't infer exactly what dtype of integer it should have so did not convert it. Column 'b' was again converted to 'string' dtype as it was recognised as holding 'string' values.
Use this:
a = [['a', '1.2', '4.2'], ['b', '70', '0.03'], ['x', '5', '0']]
df = pd.DataFrame(a, columns=['one', 'two', 'three'])
df
Out[16]:
one two three
0 a 1.2 4.2
1 b 70 0.03
2 x 5 0
df.dtypes
Out[17]:
one object
two object
three object
df[['two', 'three']] = df[['two', 'three']].astype(float)
df.dtypes
Out[19]:
one object
two float64
three float64
This below code will change the datatype of a column.
df[['col.name1', 'col.name2'...]] = df[['col.name1', 'col.name2'..]].astype('data_type')
In place of the data type, you can give your datatype what you want, like, str, float, int, etc.
When I've only needed to specify specific columns, and I want to be explicit, I've used (per pandas.DataFrame.astype):
dataframe = dataframe.astype({'col_name_1':'int','col_name_2':'float64', etc. ...})
So, using the original question, but providing column names to it...
a = [['a', '1.2', '4.2'], ['b', '70', '0.03'], ['x', '5', '0']]
df = pd.DataFrame(a, columns=['col_name_1', 'col_name_2', 'col_name_3'])
df = df.astype({'col_name_2':'float64', 'col_name_3':'float64'})
pandas >= 1.0
Here's a chart that summarises some of the most important conversions in pandas.
Conversions to string are trivial .astype(str) and are not shown in the figure.
"Hard" versus "Soft" conversions
Note that "conversions" in this context could either refer to converting text data into their actual data type (hard conversion), or inferring more appropriate data types for data in object columns (soft conversion). To illustrate the difference, take a look at
df = pd.DataFrame({'a': ['1', '2', '3'], 'b': [4, 5, 6]}, dtype=object)
df.dtypes
a object
b object
dtype: object
# Actually converts string to numeric - hard conversion
df.apply(pd.to_numeric).dtypes
a int64
b int64
dtype: object
# Infers better data types for object data - soft conversion
df.infer_objects().dtypes
a object # no change
b int64
dtype: object
# Same as infer_objects, but converts to equivalent ExtensionType
df.convert_dtypes().dtypes
Here is a function that takes as its arguments a DataFrame and a list of columns and coerces all data in the columns to numbers.
# df is the DataFrame, and column_list is a list of columns as strings (e.g ["col1","col2","col3"])
# dependencies: pandas
def coerce_df_columns_to_numeric(df, column_list):
df[column_list] = df[column_list].apply(pd.to_numeric, errors='coerce')
So, for your example:
import pandas as pd
def coerce_df_columns_to_numeric(df, column_list):
df[column_list] = df[column_list].apply(pd.to_numeric, errors='coerce')
a = [['a', '1.2', '4.2'], ['b', '70', '0.03'], ['x', '5', '0']]
df = pd.DataFrame(a, columns=['col1','col2','col3'])
coerce_df_columns_to_numeric(df, ['col2','col3'])
df = df.astype({"columnname": str})
#e.g - for changing the column type to string
#df is your dataframe
Create two dataframes, each with different data types for their columns, and then appending them together:
d1 = pd.DataFrame(columns=[ 'float_column' ], dtype=float)
d1 = d1.append(pd.DataFrame(columns=[ 'string_column' ], dtype=str))
Results
In[8}: d1.dtypes
Out[8]:
float_column float64
string_column object
dtype: object
After the dataframe is created, you can populate it with floating point variables in the 1st column, and strings (or any data type you desire) in the 2nd column.
df.info() gives us initial datatype of temp which is float64
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 date 132 non-null object
1 temp 132 non-null float64
Now, use this code to change the datatype to int64:
df['temp'] = df['temp'].astype('int64')
if you do df.info() again, you will see:
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 date 132 non-null object
1 temp 132 non-null int64
This shows you have successfully changed the datatype of column temp. Happy coding!
Starting pandas 1.0.0, we have pandas.DataFrame.convert_dtypes. You can even control what types to convert!
In [40]: df = pd.DataFrame(
...: {
...: "a": pd.Series([1, 2, 3], dtype=np.dtype("int32")),
...: "b": pd.Series(["x", "y", "z"], dtype=np.dtype("O")),
...: "c": pd.Series([True, False, np.nan], dtype=np.dtype("O")),
...: "d": pd.Series(["h", "i", np.nan], dtype=np.dtype("O")),
...: "e": pd.Series([10, np.nan, 20], dtype=np.dtype("float")),
...: "f": pd.Series([np.nan, 100.5, 200], dtype=np.dtype("float")),
...: }
...: )
In [41]: dff = df.copy()
In [42]: df
Out[42]:
a b c d e f
0 1 x True h 10.0 NaN
1 2 y False i NaN 100.5
2 3 z NaN NaN 20.0 200.0
In [43]: df.dtypes
Out[43]:
a int32
b object
c object
d object
e float64
f float64
dtype: object
In [44]: df = df.convert_dtypes()
In [45]: df.dtypes
Out[45]:
a Int32
b string
c boolean
d string
e Int64
f float64
dtype: object
In [46]: dff = dff.convert_dtypes(convert_boolean = False)
In [47]: dff.dtypes
Out[47]:
a Int32
b string
c object
d string
e Int64
f float64
dtype: object
In case you have various objects columns like this Dataframe of 74 Objects columns and 2 Int columns where each value have letters representing units:
import pandas as pd
import numpy as np
dataurl = 'https://raw.githubusercontent.com/RubenGavidia/Pandas_Portfolio.py/main/Wes_Mckinney.py/nutrition.csv'
nutrition = pd.read_csv(dataurl,index_col=[0])
nutrition.head(3)
Output:
name serving_size calories total_fat saturated_fat cholesterol sodium choline folate folic_acid ... fat saturated_fatty_acids monounsaturated_fatty_acids polyunsaturated_fatty_acids fatty_acids_total_trans alcohol ash caffeine theobromine water
0 Cornstarch 100 g 381 0.1g NaN 0 9.00 mg 0.4 mg 0.00 mcg 0.00 mcg ... 0.05 g 0.009 g 0.016 g 0.025 g 0.00 mg 0.0 g 0.09 g 0.00 mg 0.00 mg 8.32 g
1 Nuts, pecans 100 g 691 72g 6.2g 0 0.00 mg 40.5 mg 22.00 mcg 0.00 mcg ... 71.97 g 6.180 g 40.801 g 21.614 g 0.00 mg 0.0 g 1.49 g 0.00 mg 0.00 mg 3.52 g
2 Eggplant, raw 100 g 25 0.2g NaN 0 2.00 mg 6.9 mg 22.00 mcg 0.00 mcg ... 0.18 g 0.034 g 0.016 g 0.076 g 0.00 mg 0.0 g 0.66 g 0.00 mg 0.00 mg 92.30 g
3 rows × 76 columns
nutrition.dtypes
name object
serving_size object
calories int64
total_fat object
saturated_fat object
...
alcohol object
ash object
caffeine object
theobromine object
water object
Length: 76, dtype: object
nutrition.dtypes.value_counts()
object 74
int64 2
dtype: int64
A good way to convert to numeric all columns is using regular expressions to replace the units for nothing and astype(float) for change the columns data type to float:
nutrition.index = pd.RangeIndex(start = 0, stop = 8789, step= 1)
nutrition.set_index('name',inplace = True)
nutrition.replace('[a-zA-Z]','', regex= True, inplace=True)
nutrition=nutrition.astype(float)
nutrition.head(3)
Output:
serving_size calories total_fat saturated_fat cholesterol sodium choline folate folic_acid niacin ... fat saturated_fatty_acids monounsaturated_fatty_acids polyunsaturated_fatty_acids fatty_acids_total_trans alcohol ash caffeine theobromine water
name
Cornstarch 100.0 381.0 0.1 NaN 0.0 9.0 0.4 0.0 0.0 0.000 ... 0.05 0.009 0.016 0.025 0.0 0.0 0.09 0.0 0.0 8.32
Nuts, pecans 100.0 691.0 72.0 6.2 0.0 0.0 40.5 22.0 0.0 1.167 ... 71.97 6.180 40.801 21.614 0.0 0.0 1.49 0.0 0.0 3.52
Eggplant, raw 100.0 25.0 0.2 NaN 0.0 2.0 6.9 22.0 0.0 0.649 ... 0.18 0.034 0.016 0.076 0.0 0.0 0.66 0.0 0.0 92.30
3 rows × 75 columns
nutrition.dtypes
serving_size float64
calories float64
total_fat float64
saturated_fat float64
cholesterol float64
...
alcohol float64
ash float64
caffeine float64
theobromine float64
water float64
Length: 75, dtype: object
nutrition.dtypes.value_counts()
float64 75
dtype: int64
Now the dataset is clean and you are able to do numeric operations with this Dataframe only with regex and astype().
If you want to collect the units and paste on the headers like cholesterol_mg you can use this code:
nutrition.index = pd.RangeIndex(start = 0, stop = 8789, step= 1)
nutrition.set_index('name',inplace = True)
nutrition.astype(str).replace('[^a-zA-Z]','', regex= True)
units = nutrition.astype(str).replace('[^a-zA-Z]','', regex= True)
units = units.mode()
units = units.replace('', np.nan).dropna(axis=1)
mapper = { k: k + "_" + units[k].at[0] for k in units}
nutrition.rename(columns=mapper, inplace=True)
nutrition.replace('[a-zA-Z]','', regex= True, inplace=True)
nutrition=nutrition.astype(float)
Is there a way to specify the types while converting to DataFrame?
Yes. The other answers convert the dtypes after creating the DataFrame, but we can specify the types at creation. Use either DataFrame.from_records or read_csv(dtype=...) depending on the input format.
The latter is sometimes necessary to avoid memory errors with big data.
1. DataFrame.from_records
Create the DataFrame from a structured array of the desired column types:
x = [['foo', '1.2', '70'], ['bar', '4.2', '5']]
df = pd.DataFrame.from_records(np.array(
[tuple(row) for row in x], # pass a list-of-tuples (x can be a list-of-lists or 2D array)
'object, float, int' # define the column types
))
Output:
>>> df.dtypes
# f0 object
# f1 float64
# f2 int64
# dtype: object
2. read_csv(dtype=...)
If you're reading the data from a file, use the dtype parameter of read_csv to set the column types at load time.
For example, here we read 30M rows with rating as 8-bit integers and genre as categorical:
lines = '''
foo,biography,5
bar,crime,4
baz,fantasy,3
qux,history,2
quux,horror,1
'''
columns = ['name', 'genre', 'rating']
csv = io.StringIO(lines * 6_000_000) # 30M lines
df = pd.read_csv(csv, names=columns, dtype={'rating': 'int8', 'genre': 'category'})
In this case, we halve the memory usage upon load:
>>> df.info(memory_usage='deep')
# memory usage: 1.8 GB
>>> pd.read_csv(io.StringIO(lines * 6_000_000)).info(memory_usage='deep')
# memory usage: 3.7 GB
This is one way to avoid memory errors with big data. It's not always possible to change the dtypes after loading since we might not have enough memory to load the default-typed data in the first place.
I thought I had the same problem, but actually I have a slight difference that makes the problem easier to solve. For others looking at this question, it's worth checking the format of your input list. In my case the numbers are initially floats, not strings as in the question:
a = [['a', 1.2, 4.2], ['b', 70, 0.03], ['x', 5, 0]]
But by processing the list too much before creating the dataframe, I lose the types and everything becomes a string.
Creating the data frame via a NumPy array:
df = pd.DataFrame(np.array(a))
df
Out[5]:
0 1 2
0 a 1.2 4.2
1 b 70 0.03
2 x 5 0
df[1].dtype
Out[7]: dtype('O')
gives the same data frame as in the question, where the entries in columns 1 and 2 are considered as strings. However doing
df = pd.DataFrame(a)
df
Out[10]:
0 1 2
0 a 1.2 4.20
1 b 70.0 0.03
2 x 5.0 0.00
df[1].dtype
Out[11]: dtype('float64')
does actually give a data frame with the columns in the correct format.
I had the same issue.
I could not find any solution that was satisfying. My solution was simply to convert those float into str and remove the '.0' this way.
In my case, I just apply it on the first column:
firstCol = list(df.columns)[0]
df[firstCol] = df[firstCol].fillna('').astype(str).apply(lambda x: x.replace('.0', ''))
If you want convert one column from string format I suggest use this code"
import pandas as pd
#My Test Data
data = {'Product': ['A','B', 'C','D'],
'Price': ['210','250', '320','280']}
data
#Create Data Frame from My data df = pd.DataFrame(data)
#Convert to number
df['Price'] = pd.to_numeric(df['Price'])
df
Total = sum(df['Price'])
Total
else if you going to convert a number of column values to number I suggest to you first filter your values and save in empty array and after that convert to number. I hope this code solve your problem.
Convert string representation of long numbers to integers
By default, astype(int) converts to int32, which wouldn't work (OverflowError) if a number is particularly long (such as phone number); try 'int64' (or even float) instead:
df['long_num'] = df['long_num'].astype('int64')
On a side note, if you get SettingWithCopyWarning, then make a copy of your frame and do whatever you were doing again. For example, if you were converting col1 and col2 to float dtype, then do:
df = df.copy()
df[['col1', 'col2']] = df[['col1', 'col2']].astype(float)
# or use assign
df = df.assign(**{k: df[k].astype(float) for k in ['col1', 'col2']})
Convert integers to timedelta
Also, the long string/integer maybe datetime or timedelta, in which case, use to_datetime or to_timedelta to convert to datetime/timedelta dtype:
df = pd.DataFrame({'long_int': ['1018880886000000000', '1590305014000000000', '1101470895000000000', '1586646272000000000', '1460958607000000000']})
df['datetime'] = pd.to_datetime(df['long_int'].astype('int64'))
# or
df['datetime'] = pd.to_datetime(df['long_int'].astype(float))
df['timedelta'] = pd.to_timedelta(df['long_int'].astype('int64'))
Convert timedelta to numbers
To perform the reverse operation (convert datetime/timedelta to numbers), view it as 'int64'. This could be useful if you were building a machine learning model that somehow needs to include time (or datetime) as a numeric value. Just make sure that if the original data are strings, then they must be converted to timedelta or datetime before any conversion to numbers.
df = pd.DataFrame({'Time diff': ['2 days 4:00:00', '3 days', '4 days', '5 days', '6 days']})
df['Time diff in nanoseconds'] = pd.to_timedelta(df['Time diff']).view('int64')
df['Time diff in seconds'] = pd.to_timedelta(df['Time diff']).view('int64') // 10**9
df['Time diff in hours'] = pd.to_timedelta(df['Time diff']).view('int64') // (3600*10**9)
Convert datetime to numbers
For datetime, the numeric view of a datetime is the time difference between that datetime and the UNIX epoch (1970-01-01).
df = pd.DataFrame({'Date': ['2002-04-15', '2020-05-24', '2004-11-26', '2020-04-11', '2016-04-18']})
df['Time_since_unix_epoch'] = pd.to_datetime(df['Date'], format='%Y-%m-%d').view('int64')
astype is faster than to_numeric
df = pd.DataFrame(np.random.default_rng().choice(1000, size=(10000, 50)).astype(str))
df = pd.concat([df, pd.DataFrame(np.random.rand(10000, 50).astype(str), columns=range(50, 100))], axis=1)
%timeit df.astype(dict.fromkeys(df.columns[:50], int) | dict.fromkeys(df.columns[50:], float))
# 488 ms ± 28 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
%timeit df.apply(pd.to_numeric)
# 686 ms ± 45.8 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

Summing up two columns of pandas dataframe ignoring NaN

I have a pandas dataframe as below:
import pandas as pd
df = pd.DataFrame({'ORDER':["A", "A"], 'col1':[np.nan, np.nan], 'col2':[np.nan, 5]})
df
ORDER col1 col2
0 A NaN NaN
1 A NaN 5.0
I want to create a column 'new' as sum(col1, col2) ignoring Nan only if one of the column as Nan,
If both of the columns have NaN value, it should return NaN as below
I tried the below code and it works fine. Is there any way to achieve the same with just one line of code.
df['new'] = df[['col1', 'col2']].sum(axis = 1)
df['new'] = np.where(pd.isnull(df['col1']) & pd.isnull(df['col2']), np.nan, df['new'])
df
ORDER col1 col2 new
0 A NaN NaN NaN
1 A NaN 5.0 5.0
Do sum with min_count
df['new'] = df[['col1','col2']].sum(axis=1,min_count=1)
Out[78]:
0 NaN
1 5.0
dtype: float64
Use the add function on the two columns, which takes a fill_value argument that lets you replace NaN:
df['col1'].add(df['col2'], fill_value=0)
0 NaN
1 5.0
dtype: float64
Is this ok?
df['new'] = df[['col1', 'col2']].sum(axis = 1).replace(0,np.nan)

Pandas, how to dropna values using subset with multiindex dataframe?

I have a data frame with multi-index columns.
From this data frame I need to remove the rows with NaN values in a subset of columns.
I am trying to use the subset option of pd.dropna but I do not manage to find the way to specify the subset of columns. I have tried using pd.IndexSlice but this does not work.
In the example below I need to get ride of the last row.
import pandas as pd
# ---
a = [1, 1, 2, 2, 3, 3]
b = ["a", "b", "a", "b", "a", "b"]
col = pd.MultiIndex.from_arrays([a[:], b[:]])
val = [
[1, 2, 3, 4, 5, 6],
[None, None, 1, 2, 3, 4],
[None, 1, 2, 3, 4, 5],
[None, None, 5, 3, 3, 2],
[None, None, None, None, 5, 7],
]
# ---
df = pd.DataFrame(val, columns=col)
# ---
print(df)
# ---
idx = pd.IndexSlice
df.dropna(axis=0, how="all", subset=idx[1:2, :])
# ---
print(df)
Using the thresh option is an alternative but if possible I would like to use subset and how='all'
When dealing with a MultiIndex, each column of the MultiIndex can be specified as a tuple:
In [67]: df.dropna(axis=0, how="all", subset=[(1, 'a'), (1, 'b'), (2, 'a'), (2, 'b')])
Out[67]:
1 2 3
a b a b a b
0 1.0 2.0 3.0 4.0 5 6
1 NaN NaN 1.0 2.0 3 4
2 NaN 1.0 2.0 3.0 4 5
3 NaN NaN 5.0 3.0 3 2
Or, to select all columns whose first level equals 1 or 2 you could use:
In [69]: df.dropna(axis=0, how="all", subset=df.loc[[], [1,2]].columns)
Out[69]:
1 2 3
a b a b a b
0 1.0 2.0 3.0 4.0 5 6
1 NaN NaN 1.0 2.0 3 4
2 NaN 1.0 2.0 3.0 4 5
3 NaN NaN 5.0 3.0 3 2
df[[1,2]].columns also works, but this returns a (possibly large) intermediate DataFrame. df.loc[[], [1,2]].columns is more memory-efficient since its intermediate DataFrame is empty.
If you want to apply the dropna to the columns which have 1 or 2 in level 1, you can do it as follows:
cols= [(c0, c1) for (c0, c1) in df.columns if c0 in [1,2]]
df.dropna(axis=0, how="all", subset=cols)
If applied to your data, it results in:
Out[446]:
1 2 3
a b a b a b
0 1.0 2.0 3.0 4.0 5 6
1 NaN NaN 1.0 2.0 3 4
2 NaN 1.0 2.0 3.0 4 5
3 NaN NaN 5.0 3.0 3 2
As you can see, the last line (index=4) is gone, because all columns below 1 and 2 were NaN for this line. If you rather want all rows to be removed, where any NaN occured in the column, you need:
df.dropna(axis=0, how="any", subset=cols)
Which results in:
Out[447]:
1 2 3
a b a b a b
0 1.0 2.0 3.0 4.0 5 6

How to deal with 5 or 6 digit values for Latitude and Longitude?

I am trying to read in a dataframe and the latitude and longitude doesn't seem accurate. And this is not only for few rows but an entire dataframe with more than 100k rows.
screenshot of dataframe
How do you handle such data?
It looks like your source could be using 99999 instead of NaN. I'd replace these with NaN (missing):
In [11]: df = pd.DataFrame([[1, 99999.0], [2, 4]], columns=['A', 'B'])
In [12]: df[['B']] = df[['B']].replace(99999., np.nan)
In [13]: df
Out[13]:
A B
0 1 NaN
1 2 4.0
i.e.
df[['Latitude', 'Longitude']] = df[['Latitude', 'Longitude']].replace(99999., np.nan)
Note: This might replace some geo locations that are legitimately 99999 but that's very unlikely!

Pandas Rows with missing values in multiple columns

I have a dataframe with columns age, date and location.
I would like to count how many rows are empty across ALL columns (not some but all in the same time). I have the following code, each line works independently, but how do I say age AND date AND location isnull?
df['age'].isnull().sum()
df['date'].isnull().sum()
df['location'].isnull().sum()
I would like to return a dataframe after removing the rows with missing values in ALL these three columns, so something like the following lines but combined in one statement:
df.mask(row['location'].isnull())
df[np.isfinite(df['age'])]
df[np.isfinite(df['date'])]
You basically can use your approach, but drop the column indices:
df.isnull().sum().sum()
The first .sum() returns a per-column value, while the second .sum() will return the sum of all NaN values.
Similar to Vaishali's answer, you can use df.dropna() to drop all values that are NaN or None and only return your cleaned DataFrame.
In [45]: df = pd.DataFrame({'age': [1, 2, 3, np.NaN, 4, None], 'date': [1, 2, 3, 4, None, 5], 'location': ['a', 'b', 'c', None, 'e', 'f']})
In [46]: df
Out[46]:
age date location
0 1.0 1.0 a
1 2.0 2.0 b
2 3.0 3.0 c
3 NaN 4.0 None
4 4.0 NaN e
5 NaN 5.0 f
In [47]: df.isnull().sum().sum()
Out[47]: 4
In [48]: df.dropna()
Out[48]:
age date location
0 1.0 1.0 a
1 2.0 2.0 b
2 3.0 3.0 c
You can find the no of rows with all NaNs by
len(df) - len(df.dropna(how = 'all'))
and drop by
df = df.dropna(how = 'all')
This will drop the rows with all the NaN values

Resources