pyspark: for loop calculations over the columns - apache-spark

Anyone know how can I do theses calculations in pyspark?
data = {
'Name': ['Tom', 'nick', 'krish', 'jack'],
'Age': [20, 21, 19, 18],
'CSP': [2, 6, 8, 7],
'coef': [2, 2, 3, 3]
}
# Create DataFrame
df = pd.DataFrame(data)
colsToRecalculate = ['Age','CSP']
for i in range(len(colsToRecalculate)):
df[colsToRecalculate[i]] =df[colsToRecalculate[i]]/df["coef"]

You can use select() on spark dataframe and include multiple columns (with different calculations) as parameters. In your case:
df2 = spark.createDataFrame(pd.DataFrame(data))
df2.select(*[(F.col(c) / F.col('coef')).alias(c) for c in colsToRecalculate], 'coef').show()

Slight variation to bzu's answer which selects non-listed columns manually within the select. We can use dataframe.columns and check the columns against the colsToRecalculate list - If column is in the list, do the calculation, else leave column as is.
data_sdf. \
select(*[(func.col(k) / func.col('coef')).alias(k) if k in colsToRecalculate else k for k in data_sdf.columns])

Related

Plotting aggregated values from specific column of multiple dataframe indexed by timedate

I have three dataframe as below:
import pandas as pd
labels=['1','2','3','Aggregated']
df1 = {'date_time': ["2022-10-06 17:23:11","2022-10-06 17:23:12","2022-10-06 17:23:13","2022-10-06 17:23:14","2022-10-06 17:23:15","2022-10-06 17:23:16"],
'value': [4, 5, 6, 7, 8, 9]}
df2 = {'date_time': ["2022-10-06 17:23:13","2022-10-06 17:23:14","2022-10-06 17:23:15","2022-10-06 17:23:16","2022-10-06 17:23:17","2022-10-06 17:23:18"],
'value': [4, 5, 6, 7, 8, 9]}
df3 = {'date_time': ["2022-10-06 17:23:16","2022-10-06 17:23:17","2022-10-06 17:23:18","2022-10-06 17:23:19","2022-10-06 17:23:20","2022-10-06 17:23:21"],
'value': [4, 5, 6, 7, 8, 9]}
I need to create another dataframe df that contains all the datetime elements from all three df1,df2,df3 such that the common valued are summed up in-terms of common timestamps (excluding the millisecond parts) as shown below.
df=
{'date_time': ["2022-10-06 17:23:11","2022-10-06 17:23:12","2022-10-06 17:23:13","2022-10-06 17:23:14","2022-10-06 17:23:15","2022-10-06 17:23:16","2022-10-06 17:23:17","2022-10-06 17:23:18","2022-10-06 17:23:19","2022-10-06 17:23:20","2022-10-06 17:23:21"],
'value': [4, 5, 6+4, 7+5, 8+6, 9+7+4, 8+5, 9+6, 7, 8, 9]}
For adding the columns I used following:
df = (pd.concat([df1,df2,df3],axis=0)).groupby('date_time')['value'].sum().reset_index()
For plotting I used following which results in df2 and df3 to time shift towards df1.
for dataFrame,number in zip([df1,df2,df3,df],labels):
dataFrame["value"].plot(label=number)
How can I plot the three df1,df2,df3 without time shifting and also plot the aggregated df on the same plot for dataframe column 'value'?
IIUC you search for something like this:
labels=["Aggregated","1","2","3"]
color_dict = {"Aggregated": "orange", "1": "darkred", "2": "green", "3": "blue"}
fig, ax = plt.subplots()
for i, (d, label) in enumerate(zip([df, df1, df2, df3], labels),1):
ax.plot(d["date_time"], d["value"], lw=3/i, color=color_dict[label], label=label)
plt.setp(ax.get_xticklabels(), ha="right", rotation=45)
plt.legend()
plt.show()

Wilcoxon rank sum test between two data frames in python

I am trying to perform a Wilcoxon rank-sum test between two data frames. I would like to perform the test only between the rows. for example, the test should only be done between row 1 in df1 (A, 1, 2, 3) and df2 (A ,10, 12 ,13), row 2 in df1 (B ,4, 5, 6) and df2 (B ,14, 15, 16), and so on.
df1=pd.DataFrame(np.array([['A',1, 2, 3], ['B',4, 5, 6], ['C',7, 8, 9]]),
columns=['Details','a', 'b', 'c'])
df2=pd.DataFrame(np.array([['A',10, 12, 13], ['B',14, 15, 16], ['C',17, 18, 19]]),
columns=['Details','a', 'b', 'c'])
This should lead me to a column of p values for the test between the rows of the data frames.
out = pd.DataFrame(np.array([['A',0.05], ['B',0.0002], ['C',1]]),
columns=['details','P'])
One way is to apply a for loop but unfortunately, I have 28000 rows in my original dataset and this experiment has to be repeated at least 1000 times. I am wondering if anyone has a better strategy to approach this. Thank you very much for your help in advance.
One way to calculate this is using ranksums of scipy
from scipy.stats import ranksums
import pandas as pd
df1=pd.DataFrame(np.array([['A',1, 2, 3], ['B',4, 5, 6], ['C',7, 8, 9]]),
columns=['Details','a', 'b', 'c'])
df2=pd.DataFrame(np.array([['A',10, 12, 13], ['B',14, 15, 16], ['C',17, 18, 19]]),
columns=['Details','a', 'b', 'c'])
a = df1.loc[0,'a':].values.astype(int) #Select the first row
b = df2.loc[0,'a':].values.astype(int) #Select the second row
ranksums(a, b)

Append pandas dataframe from other pandas dataframe that are values of a dictionary

I have a dictionary with N pairs (key,value), where N is unknown; each value is a pandas dataframe that contains a different set of columns. For example:
d = {'DF1': pd.DataFrame(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]), columns=['a', 'b', 'c']),
'DF2': pd.DataFrame(np.array([[10, 11 ,12], [13, 14, 15]]),columns=['d', 'e'])}
I would to append all dataframes contained into the dictionary, in a third empty dataframe because I have to save all dataframes of dictionary into a parquet file. But if I use the following lines of code, there is no dataframe into df3:
df3 = pd.Dataframe()
for key in d:
df3.append(d[key], ignore_index=True)
How can I append all dataframes into df3?
UPDATE 1: all dataframes into the dictionary may have common columns
Try:
v=list(d.values())
df3=v[0]
for el in v[1:]:
df3=pd.concat([df3,el])
df3=df3.reset_index(drop=True)
Or simpler, per your comment:
df3 = pd.concat(d.values(), axis=0).reset_index(drop=True)
I think a better approach is to use your for loop to concatenate the dataframes, i.e. pd.concat. Here's a link to the docs for how to use the function: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.concat.html. The catch with this is to make sure you append along the right axis (0 or 1)!

Selecting pandas dataframe column by row-specific list

For each row in a dataframe, I'm trying to select the column, which is specified in a list. The list has the same length as the dataframe has rows.
df = pd.DataFrame({"a":[1,2,3,4,5],
"b":[3,4,5,6,7],
"c":[9,10,11,12,13]})
lst = ["a","a","c","b","a"]
The result would look like this:
[1,2,11,6,5]
Just lookup would be fine:
df.lookup(df.index,lst)
#array([ 1, 2, 11, 6, 5], dtype=int64)
lookup should be the way, but try something diff
df.stack().reindex(pd.MultiIndex.from_arrays([df.index,lst])).values
array([ 1, 2, 11, 6, 5])

How can I iterate over pandas dataframes and concatenate on another dataframe [duplicate]

I have 3 CSV files. Each has the first column as the (string) names of people, while all the other columns in each dataframe are attributes of that person.
How can I "join" together all three CSV documents to create a single CSV with each row having all the attributes for each unique value of the person's string name?
The join() function in pandas specifies that I need a multiindex, but I'm confused about what a hierarchical indexing scheme has to do with making a join based on a single index.
Zero's answer is basically a reduce operation. If I had more than a handful of dataframes, I'd put them in a list like this (generated via list comprehensions or loops or whatnot):
dfs = [df0, df1, df2, ..., dfN]
Assuming they have a common column, like name in your example, I'd do the following:
import functools as ft
df_final = ft.reduce(lambda left, right: pd.merge(left, right, on='name'), dfs)
That way, your code should work with whatever number of dataframes you want to merge.
You could try this if you have 3 dataframes
# Merge multiple dataframes
df1 = pd.DataFrame(np.array([
['a', 5, 9],
['b', 4, 61],
['c', 24, 9]]),
columns=['name', 'attr11', 'attr12'])
df2 = pd.DataFrame(np.array([
['a', 5, 19],
['b', 14, 16],
['c', 4, 9]]),
columns=['name', 'attr21', 'attr22'])
df3 = pd.DataFrame(np.array([
['a', 15, 49],
['b', 4, 36],
['c', 14, 9]]),
columns=['name', 'attr31', 'attr32'])
pd.merge(pd.merge(df1,df2,on='name'),df3,on='name')
alternatively, as mentioned by cwharland
df1.merge(df2,on='name').merge(df3,on='name')
This is an ideal situation for the join method
The join method is built exactly for these types of situations. You can join any number of DataFrames together with it. The calling DataFrame joins with the index of the collection of passed DataFrames. To work with multiple DataFrames, you must put the joining columns in the index.
The code would look something like this:
filenames = ['fn1', 'fn2', 'fn3', 'fn4',....]
dfs = [pd.read_csv(filename, index_col=index_col) for filename in filenames)]
dfs[0].join(dfs[1:])
With #zero's data, you could do this:
df1 = pd.DataFrame(np.array([
['a', 5, 9],
['b', 4, 61],
['c', 24, 9]]),
columns=['name', 'attr11', 'attr12'])
df2 = pd.DataFrame(np.array([
['a', 5, 19],
['b', 14, 16],
['c', 4, 9]]),
columns=['name', 'attr21', 'attr22'])
df3 = pd.DataFrame(np.array([
['a', 15, 49],
['b', 4, 36],
['c', 14, 9]]),
columns=['name', 'attr31', 'attr32'])
dfs = [df1, df2, df3]
dfs = [df.set_index('name') for df in dfs]
dfs[0].join(dfs[1:])
attr11 attr12 attr21 attr22 attr31 attr32
name
a 5 9 5 19 15 49
b 4 61 14 16 4 36
c 24 9 4 9 14 9
In python 3.6.3 with pandas 0.22.0 you can also use concat as long as you set as index the columns you want to use for the joining:
pd.concat(
objs=(iDF.set_index('name') for iDF in (df1, df2, df3)),
axis=1,
join='inner'
).reset_index()
where df1, df2, and df3 are defined as in John Galt's answer:
import pandas as pd
df1 = pd.DataFrame(np.array([
['a', 5, 9],
['b', 4, 61],
['c', 24, 9]]),
columns=['name', 'attr11', 'attr12']
)
df2 = pd.DataFrame(np.array([
['a', 5, 19],
['b', 14, 16],
['c', 4, 9]]),
columns=['name', 'attr21', 'attr22']
)
df3 = pd.DataFrame(np.array([
['a', 15, 49],
['b', 4, 36],
['c', 14, 9]]),
columns=['name', 'attr31', 'attr32']
)
This can also be done as follows for a list of dataframes df_list:
df = df_list[0]
for df_ in df_list[1:]:
df = df.merge(df_, on='join_col_name')
or if the dataframes are in a generator object (e.g. to reduce memory consumption):
df = next(df_list)
for df_ in df_list:
df = df.merge(df_, on='join_col_name')
Simple Solution:
If the column names are similar:
df1.merge(df2,on='col_name').merge(df3,on='col_name')
If the column names are different:
df1.merge(df2,left_on='col_name1', right_on='col_name2').merge(df3,left_on='col_name1', right_on='col_name3').drop(columns=['col_name2', 'col_name3']).rename(columns={'col_name1':'col_name'})
Here is a method to merge a dictionary of data frames while keeping the column names in sync with the dictionary. Also it fills in missing values if needed:
This is the function to merge a dict of data frames
def MergeDfDict(dfDict, onCols, how='outer', naFill=None):
keys = dfDict.keys()
for i in range(len(keys)):
key = keys[i]
df0 = dfDict[key]
cols = list(df0.columns)
valueCols = list(filter(lambda x: x not in (onCols), cols))
df0 = df0[onCols + valueCols]
df0.columns = onCols + [(s + '_' + key) for s in valueCols]
if (i == 0):
outDf = df0
else:
outDf = pd.merge(outDf, df0, how=how, on=onCols)
if (naFill != None):
outDf = outDf.fillna(naFill)
return(outDf)
OK, lets generates data and test this:
def GenDf(size):
df = pd.DataFrame({'categ1':np.random.choice(a=['a', 'b', 'c', 'd', 'e'], size=size, replace=True),
'categ2':np.random.choice(a=['A', 'B'], size=size, replace=True),
'col1':np.random.uniform(low=0.0, high=100.0, size=size),
'col2':np.random.uniform(low=0.0, high=100.0, size=size)
})
df = df.sort_values(['categ2', 'categ1', 'col1', 'col2'])
return(df)
size = 5
dfDict = {'US':GenDf(size), 'IN':GenDf(size), 'GER':GenDf(size)}
MergeDfDict(dfDict=dfDict, onCols=['categ1', 'categ2'], how='outer', naFill=0)
One does not need a multiindex to perform join operations.
One just need to set correctly the index column on which to perform the join operations (which command df.set_index('Name') for example)
The join operation is by default performed on index.
In your case, you just have to specify that the Name column corresponds to your index.
Below is an example
A tutorial may be useful.
# Simple example where dataframes index are the name on which to perform
# the join operations
import pandas as pd
import numpy as np
name = ['Sophia' ,'Emma' ,'Isabella' ,'Olivia' ,'Ava' ,'Emily' ,'Abigail' ,'Mia']
df1 = pd.DataFrame(np.random.randn(8, 3), columns=['A','B','C'], index=name)
df2 = pd.DataFrame(np.random.randn(8, 1), columns=['D'], index=name)
df3 = pd.DataFrame(np.random.randn(8, 2), columns=['E','F'], index=name)
df = df1.join(df2)
df = df.join(df3)
# If you have a 'Name' column that is not the index of your dataframe,
# one can set this column to be the index
# 1) Create a column 'Name' based on the previous index
df1['Name'] = df1.index
# 1) Select the index from column 'Name'
df1 = df1.set_index('Name')
# If indexes are different, one may have to play with parameter how
gf1 = pd.DataFrame(np.random.randn(8, 3), columns=['A','B','C'], index=range(8))
gf2 = pd.DataFrame(np.random.randn(8, 1), columns=['D'], index=range(2,10))
gf3 = pd.DataFrame(np.random.randn(8, 2), columns=['E','F'], index=range(4,12))
gf = gf1.join(gf2, how='outer')
gf = gf.join(gf3, how='outer')
There is another solution from the pandas documentation (that I don't see here),
using the .append
>>> df = pd.DataFrame([[1, 2], [3, 4]], columns=list('AB'))
A B
0 1 2
1 3 4
>>> df2 = pd.DataFrame([[5, 6], [7, 8]], columns=list('AB'))
A B
0 5 6
1 7 8
>>> df.append(df2, ignore_index=True)
A B
0 1 2
1 3 4
2 5 6
3 7 8
The ignore_index=True is used to ignore the index of the appended dataframe, replacing it with the next index available in the source one.
If there are different column names, Nan will be introduced.
I tweaked the accepted answer to perform the operation for multiple dataframes on different suffix parameters using reduce and i guess it can be extended to different on parameters as well.
from functools import reduce
dfs_with_suffixes = [(df2,suffix2), (df3,suffix3),
(df4,suffix4)]
merge_one = lambda x,y,sfx:pd.merge(x,y,on=['col1','col2'..], suffixes=sfx)
merged = reduce(lambda left,right:merge_one(left,*right), dfs_with_suffixes, df1)
df1 = pd.DataFrame(np.array([
['a', 5, 9],
['b', 4, 61],
['c', 24, 9]]),
columns=['name', 'attr11', 'attr12']
)
df2 = pd.DataFrame(np.array([
['a', 5, 19],
['d', 14, 16]]
),
columns=['name', 'attr21', 'attr22']
)
df3 = pd.DataFrame(np.array([
['a', 15, 49],
['c', 4, 36],
['d', 14, 9]]),
columns=['name', 'attr31', 'attr32']
)
df4 = pd.DataFrame(np.array([
['a', 15, 49],
['c', 4, 36],
['c', 14, 9]]),
columns=['name', 'attr41', 'attr42']
)
Three ways to join list dataframe
pandas.concat
dfs = [df1, df2, df3]
dfs = [df.set_index('name') for df in dfs]
# cant not run if index not unique
dfs = pd.concat(dfs, join='outer', axis = 1)
functools.reduce
dfs = [df1, df2, df3, df4]
# still run with index not unique
import functools as ft
df_final = ft.reduce(lambda left, right: pd.merge(left, right, on='name', how = 'outer'), dfs)
join
# cant not run if index not unique
dfs = [df1, df2, df3]
dfs = [df.set_index('name') for df in dfs]
dfs[0].join(dfs[1:], how = 'outer')
Joining together all three can be done using .join() function.
You have three DataFrames lets say
df1, df2, df3.
To join these into one DataFrame you can:
df = df1.join(df2).join(df3)
This is the simplest way I found to do this task.

Resources