Related
I'm trying to draw with matplotlib two average vertical line for every overlapping histograms using a loop. I have managed to draw the first one, but I don't know how to draw the second one. I'm using two variables from a dataset to draw the histograms. One variable (feat) is categorical (0 - 1), and the other one (objective) is numerical. The code is the following:
for chas in df[feat].unique():
plt.hist(df.loc[df[feat] == chas, objective], bins = 15, alpha = 0.5, density = True, label = chas)
plt.axvline(df[objective].mean(), linestyle = 'dashed', linewidth = 2)
plt.title(objective)
plt.legend(loc = 'upper right')
I also have to add to the legend the mean and standard deviation values for each histogram.
How can I do it? Thank you in advance.
I recommend you using axes to plot your figure. Pls see code below and the artist tutorial here.
import numpy as np
import matplotlib.pyplot as plt
# Fixing random state for reproducibility
np.random.seed(19680801)
mu1, sigma1 = 100, 8
mu2, sigma2 = 150, 15
x1 = mu1 + sigma1 * np.random.randn(10000)
x2 = mu2 + sigma2 * np.random.randn(10000)
fig, ax = plt.subplots(1, 1, figsize=(7.2, 7.2))
# the histogram of the data
lbs = ['a', 'b']
colors = ['r', 'g']
for i, x in enumerate([x1, x2]):
n, bins, patches = ax.hist(x, 50, density=True, facecolor=colors[i], alpha=0.75, label=lbs[i])
ax.axvline(bins.mean())
ax.legend()
I have the following plot:
import matplotlib.pyplot as plt
fig2 = plt.figure()
ax3 = fig2.add_subplot(2,1,1)
ax4 = fig2.add_subplot(2,1,2)
ax4.loglog(x1, y1)
ax3.loglog(x2, y2)
ax3.set_ylabel('hello')
I want to be able to create axes labels and titles not just for each of the two subplots, but also common labels that span both subplots. For example, since both plots have identical axes, I only need one set of x and y- axes labels. I do want different titles for each subplot though.
I tried a few things but none of them worked right
You can create a big subplot that covers the two subplots and then set the common labels.
import random
import matplotlib.pyplot as plt
x = range(1, 101)
y1 = [random.randint(1, 100) for _ in range(len(x))]
y2 = [random.randint(1, 100) for _ in range(len(x))]
fig = plt.figure()
ax = fig.add_subplot(111) # The big subplot
ax1 = fig.add_subplot(211)
ax2 = fig.add_subplot(212)
# Turn off axis lines and ticks of the big subplot
ax.spines['top'].set_color('none')
ax.spines['bottom'].set_color('none')
ax.spines['left'].set_color('none')
ax.spines['right'].set_color('none')
ax.tick_params(labelcolor='w', top=False, bottom=False, left=False, right=False)
ax1.loglog(x, y1)
ax2.loglog(x, y2)
# Set common labels
ax.set_xlabel('common xlabel')
ax.set_ylabel('common ylabel')
ax1.set_title('ax1 title')
ax2.set_title('ax2 title')
plt.savefig('common_labels.png', dpi=300)
Another way is using fig.text() to set the locations of the common labels directly.
import random
import matplotlib.pyplot as plt
x = range(1, 101)
y1 = [random.randint(1, 100) for _ in range(len(x))]
y2 = [random.randint(1, 100) for _ in range(len(x))]
fig = plt.figure()
ax1 = fig.add_subplot(211)
ax2 = fig.add_subplot(212)
ax1.loglog(x, y1)
ax2.loglog(x, y2)
# Set common labels
fig.text(0.5, 0.04, 'common xlabel', ha='center', va='center')
fig.text(0.06, 0.5, 'common ylabel', ha='center', va='center', rotation='vertical')
ax1.set_title('ax1 title')
ax2.set_title('ax2 title')
plt.savefig('common_labels_text.png', dpi=300)
One simple way using subplots:
import matplotlib.pyplot as plt
fig, axes = plt.subplots(3, 4, sharex=True, sharey=True)
# add a big axes, hide frame
fig.add_subplot(111, frameon=False)
# hide tick and tick label of the big axes
plt.tick_params(labelcolor='none', top=False, bottom=False, left=False, right=False)
plt.grid(False)
plt.xlabel("common X")
plt.ylabel("common Y")
New in matplotlib 3.4.0
There are now built-in methods to set common axis labels:
supxlabel
fig.supxlabel('common x label')
supylabel
fig.supylabel('common y label')
To reproduce OP's loglog plots (common labels but separate titles):
x = np.arange(0.01, 10.01, 0.01)
y = 2 ** x
fig, (ax1, ax2) = plt.subplots(2, 1, constrained_layout=True)
ax1.loglog(y, x)
ax2.loglog(x, y)
# separate subplot titles
ax1.set_title('ax1.title')
ax2.set_title('ax2.title')
# common axis labels
fig.supxlabel('fig.supxlabel')
fig.supylabel('fig.supylabel')
plt.setp() will do the job:
# plot something
fig, axs = plt.subplots(3,3, figsize=(15, 8), sharex=True, sharey=True)
for i, ax in enumerate(axs.flat):
ax.scatter(*np.random.normal(size=(2,200)))
ax.set_title(f'Title {i}')
# set labels
plt.setp(axs[-1, :], xlabel='x axis label')
plt.setp(axs[:, 0], ylabel='y axis label')
Wen-wei Liao's answer is good if you are not trying to export vector graphics or that you have set up your matplotlib backends to ignore colorless axes; otherwise the hidden axes would show up in the exported graphic.
My answer suplabel here is similar to the fig.suptitle which uses the fig.text function. Therefore there is no axes artist being created and made colorless.
However, if you try to call it multiple times you will get text added on top of each other (as fig.suptitle does too). Wen-wei Liao's answer doesn't, because fig.add_subplot(111) will return the same Axes object if it is already created.
My function can also be called after the plots have been created.
def suplabel(axis,label,label_prop=None,
labelpad=5,
ha='center',va='center'):
''' Add super ylabel or xlabel to the figure
Similar to matplotlib.suptitle
axis - string: "x" or "y"
label - string
label_prop - keyword dictionary for Text
labelpad - padding from the axis (default: 5)
ha - horizontal alignment (default: "center")
va - vertical alignment (default: "center")
'''
fig = pylab.gcf()
xmin = []
ymin = []
for ax in fig.axes:
xmin.append(ax.get_position().xmin)
ymin.append(ax.get_position().ymin)
xmin,ymin = min(xmin),min(ymin)
dpi = fig.dpi
if axis.lower() == "y":
rotation=90.
x = xmin-float(labelpad)/dpi
y = 0.5
elif axis.lower() == 'x':
rotation = 0.
x = 0.5
y = ymin - float(labelpad)/dpi
else:
raise Exception("Unexpected axis: x or y")
if label_prop is None:
label_prop = dict()
pylab.text(x,y,label,rotation=rotation,
transform=fig.transFigure,
ha=ha,va=va,
**label_prop)
Here is a solution where you set the ylabel of one of the plots and adjust the position of it so it is centered vertically. This way you avoid problems mentioned by KYC.
import numpy as np
import matplotlib.pyplot as plt
def set_shared_ylabel(a, ylabel, labelpad = 0.01):
"""Set a y label shared by multiple axes
Parameters
----------
a: list of axes
ylabel: string
labelpad: float
Sets the padding between ticklabels and axis label"""
f = a[0].get_figure()
f.canvas.draw() #sets f.canvas.renderer needed below
# get the center position for all plots
top = a[0].get_position().y1
bottom = a[-1].get_position().y0
# get the coordinates of the left side of the tick labels
x0 = 1
for at in a:
at.set_ylabel('') # just to make sure we don't and up with multiple labels
bboxes, _ = at.yaxis.get_ticklabel_extents(f.canvas.renderer)
bboxes = bboxes.inverse_transformed(f.transFigure)
xt = bboxes.x0
if xt < x0:
x0 = xt
tick_label_left = x0
# set position of label
a[-1].set_ylabel(ylabel)
a[-1].yaxis.set_label_coords(tick_label_left - labelpad,(bottom + top)/2, transform=f.transFigure)
length = 100
x = np.linspace(0,100, length)
y1 = np.random.random(length) * 1000
y2 = np.random.random(length)
f,a = plt.subplots(2, sharex=True, gridspec_kw={'hspace':0})
a[0].plot(x, y1)
a[1].plot(x, y2)
set_shared_ylabel(a, 'shared y label (a. u.)')
# list loss and acc are your data
fig = plt.figure()
ax1 = fig.add_subplot(121)
ax2 = fig.add_subplot(122)
ax1.plot(iteration1, loss)
ax2.plot(iteration2, acc)
ax1.set_title('Training Loss')
ax2.set_title('Training Accuracy')
ax1.set_xlabel('Iteration')
ax1.set_ylabel('Loss')
ax2.set_xlabel('Iteration')
ax2.set_ylabel('Accuracy')
The methods in the other answers will not work properly when the yticks are large. The ylabel will either overlap with ticks, be clipped on the left or completely invisible/outside of the figure.
I've modified Hagne's answer so it works with more than 1 column of subplots, for both xlabel and ylabel, and it shifts the plot to keep the ylabel visible in the figure.
def set_shared_ylabel(a, xlabel, ylabel, labelpad = 0.01, figleftpad=0.05):
"""Set a y label shared by multiple axes
Parameters
----------
a: list of axes
ylabel: string
labelpad: float
Sets the padding between ticklabels and axis label"""
f = a[0,0].get_figure()
f.canvas.draw() #sets f.canvas.renderer needed below
# get the center position for all plots
top = a[0,0].get_position().y1
bottom = a[-1,-1].get_position().y0
# get the coordinates of the left side of the tick labels
x0 = 1
x1 = 1
for at_row in a:
at = at_row[0]
at.set_ylabel('') # just to make sure we don't and up with multiple labels
bboxes, _ = at.yaxis.get_ticklabel_extents(f.canvas.renderer)
bboxes = bboxes.inverse_transformed(f.transFigure)
xt = bboxes.x0
if xt < x0:
x0 = xt
x1 = bboxes.x1
tick_label_left = x0
# shrink plot on left to prevent ylabel clipping
# (x1 - tick_label_left) is the x coordinate of right end of tick label,
# basically how much padding is needed to fit tick labels in the figure
# figleftpad is additional padding to fit the ylabel
plt.subplots_adjust(left=(x1 - tick_label_left) + figleftpad)
# set position of label,
# note that (figleftpad-labelpad) refers to the middle of the ylabel
a[-1,-1].set_ylabel(ylabel)
a[-1,-1].yaxis.set_label_coords(figleftpad-labelpad,(bottom + top)/2, transform=f.transFigure)
# set xlabel
y0 = 1
for at in axes[-1]:
at.set_xlabel('') # just to make sure we don't and up with multiple labels
bboxes, _ = at.xaxis.get_ticklabel_extents(fig.canvas.renderer)
bboxes = bboxes.inverse_transformed(fig.transFigure)
yt = bboxes.y0
if yt < y0:
y0 = yt
tick_label_bottom = y0
axes[-1, -1].set_xlabel(xlabel)
axes[-1, -1].xaxis.set_label_coords((left + right) / 2, tick_label_bottom - labelpad, transform=fig.transFigure)
It works for the following example, while Hagne's answer won't draw ylabel (since it's outside of the canvas) and KYC's ylabel overlaps with the tick labels:
import matplotlib.pyplot as plt
import itertools
fig, axes = plt.subplots(3, 4, sharey='row', sharex=True, squeeze=False)
fig.subplots_adjust(hspace=.5)
for i, a in enumerate(itertools.chain(*axes)):
a.plot([0,4**i], [0,4**i])
a.set_title(i)
set_shared_ylabel(axes, 'common X', 'common Y')
plt.show()
Alternatively, if you are fine with colorless axis, I've modified Julian Chen's solution so ylabel won't overlap with tick labels.
Basically, we just have to set ylims of the colorless so it matches the largest ylims of the subplots so the colorless tick labels sets the correct location for the ylabel.
Again, we have to shrink the plot to prevent clipping. Here I've hard coded the amount to shrink, but you can play around to find a number that works for you or calculate it like in the method above.
import matplotlib.pyplot as plt
import itertools
fig, axes = plt.subplots(3, 4, sharey='row', sharex=True, squeeze=False)
fig.subplots_adjust(hspace=.5)
miny = maxy = 0
for i, a in enumerate(itertools.chain(*axes)):
a.plot([0,4**i], [0,4**i])
a.set_title(i)
miny = min(miny, a.get_ylim()[0])
maxy = max(maxy, a.get_ylim()[1])
# add a big axes, hide frame
# set ylim to match the largest range of any subplot
ax_invis = fig.add_subplot(111, frameon=False)
ax_invis.set_ylim([miny, maxy])
# hide tick and tick label of the big axis
plt.tick_params(labelcolor='none', top=False, bottom=False, left=False, right=False)
plt.xlabel("common X")
plt.ylabel("common Y")
# shrink plot to prevent clipping
plt.subplots_adjust(left=0.15)
plt.show()
You could use "set" in axes as follows:
axes[0].set(xlabel="KartalOl", ylabel="Labeled")
Background:
I have a list_of_x_and_y_list that contains x and y values which looks like:
[[(44800, 14888), (132000, 12500), (40554, 12900)], [(None, 193788), (101653, 78880), (3866, 160000)]]
I have another data_name_list ["data_a","data_b"] so that
"data_a" = [(44800, 14888), (132000, 12500), (40554, 12900)]
"data_b" = [(None, 193788), (101653, 78880), (3866, 160000)]
The len of list_of_x_and_y_list / or len of data_name_list is > 20.
Question:
How can I create a scatter plot for each item (being the same colour) in the data_name_list?
What I have tried:
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax = plt.axes(facecolor='#FFFFFF')
prop_cycle = plt.rcParams['axes.prop_cycle']
colors = prop_cycle.by_key()['color']
print(list_of_x_and_y_list)
for x_and_y_list, data_name, color in zip(list_of_x_and_y_list, data_name_list, colors):
for x_and_y in x_and_y_list,:
print(x_and_y)
x, y = x_and_y
ax.scatter(x, y, label=data_name, color=color) # "label=data_name" creates
# a huge list as a legend!
# :(
plt.title('Matplot scatter plot')
plt.legend(loc=2)
file_name = "3kstc.png"
fig.savefig(file_name, dpi=fig.dpi)
print("Generated: {}".format(file_name))
The Problem:
The legend appears to be a very long list, which I don't know how to rectify:
Relevant Research:
Matplotlib scatterplot
Scatter Plot
Scatter plot in Python using matplotlib
The reason you get a long repeated list as a legend is because you are providing each point as a separate series, as matplotlib does not automatically group your data based on the labels.
A quick fix is to iterate over the list and zip together the x-values and the y-values of each series as two tuples, so that the x tuple contains all the x-values and the y tuple the y-values.
Then you can feed these tuples to the plt.plot method together with the labels.
I felt that the names list_of_x_and_y_list were uneccessary long and complicated, so in my code I've used shorter names.
import matplotlib.pyplot as plt
data_series = [[(44800, 14888), (132000, 12500), (40554, 12900)],
[(None, 193788), (101653, 78880), (3866, 160000)]]
data_names = ["data_a","data_b"]
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax = plt.axes(facecolor='#FFFFFF')
prop_cycle = plt.rcParams['axes.prop_cycle']
colors = prop_cycle.by_key()['color']
for data, data_name, color in zip(data_series, data_names, colors):
x,y = zip(*data)
ax.scatter(x, y, label=data_name, color=color)
plt.title('Matplot scatter plot')
plt.legend(loc=1)
To only get one entry per data_name, you should add data_name only once as a label. The rest of the calls should go with label=None.
The simplest you can achieve this using the current code, is to set data_name to None at the end of the loop:
from matplotlib import pyplot as plt
from random import randint
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.set_facecolor('#FFFFFF')
# create some random data, suppose the sublists have different lengths
list_of_x_and_y_list = [[(randint(1000, 4000), randint(2000, 5000)) for col in range(randint(2, 10))]
for row in range(10)]
data_name_list = list('abcdefghij')
colors = plt.rcParams['axes.prop_cycle'].by_key()['color']
for x_and_y_list, data_name, color in zip(list_of_x_and_y_list, data_name_list, colors):
for x_and_y in x_and_y_list :
x, y = x_and_y
ax.scatter(x, y, label=data_name, color=color)
data_name = None
plt.legend(loc=2)
plt.show()
Some things can be simplified, making the code 'more pythonic', for example:
for x_and_y in x_and_y_list :
x, y = x_and_y
can be written as:
for x, y in x_and_y_list:
Another issue, is that with a lot of data calling scatter for every point could be rather slow. All the x and y belonging to the same list can be plotted together. For example using list comprehension:
for x_and_y_list, data_name, color in zip(list_of_x_and_y_list, data_name_list, colors):
xs = [x for x, y in x_and_y_list]
ys = [y for x, y in x_and_y_list]
ax.scatter(xs, ys, label=data_name, color=color)
scatter could even get a list of colors per point, but plotting all the points in one go, wouldn't allow for labels per data_name.
Very often, numpy is used to store numerical data. This has some advantages, such as vectorization for quick calculations. With numpy the code would look like:
import numpy as np
for x_and_y_list, data_name, color in zip(list_of_x_and_y_list, data_name_list, colors):
xys = np.array(x_and_y_list)
ax.scatter(xys[:,0], xys[:,1], label=data_name, color=color)
Before I start I want to say that I've tried follow this and this post on the same problem however they are doing it with imshow heatmaps unlike 2d histogram like I'm doing.
Here is my code(the actual data has been replaced by randomly generated data but the gist is the same):
import matplotlib.pyplot as plt
import numpy as np
def subplots_hist_2d(x_data, y_data, x_labels, y_labels, titles):
fig, a = plt.subplots(2, 2)
a = a.ravel()
for idx, ax in enumerate(a):
image = ax.hist2d(x_data[idx], y_data[idx], bins=50, range=[[-2, 2],[-2, 2]])
ax.set_title(titles[idx], fontsize=12)
ax.set_xlabel(x_labels[idx])
ax.set_ylabel(y_labels[idx])
ax.set_aspect("equal")
cb = fig.colorbar(image[idx])
cb.set_label("Intensity", rotation=270)
# pad = how big overall pic is
# w_pad = how separate they're left to right
# h_pad = how separate they're top to bottom
plt.tight_layout(pad=-1, w_pad=-10, h_pad=0.5)
x1, y1 = np.random.uniform(-2, 2, 10000), np.random.uniform(-2, 2, 10000)
x2, y2 = np.random.uniform(-2, 2, 10000), np.random.uniform(-2, 2, 10000)
x3, y3 = np.random.uniform(-2, 2, 10000), np.random.uniform(-2, 2, 10000)
x4, y4 = np.random.uniform(-2, 2, 10000), np.random.uniform(-2, 2, 10000)
x_data = [x1, x2, x3, x4]
y_data = [y1, y2, y3, y4]
x_labels = ["x1", "x2", "x3", "x4"]
y_labels = ["y1", "y2", "y3", "y4"]
titles = ["1", "2", "3", "4"]
subplots_hist_2d(x_data, y_data, x_labels, y_labels, titles)
And this is what it's generating:
So now my problem is that I could not for the life of me make the colorbar apply for all 4 of the histograms. Also for some reason the bottom right histogram seems to behave weirdly compared with the others. In the links that I've posted their methods don't seem to use a = a.ravel() and I'm only using it here because it's the only way that allows me to plot my 4 histograms as subplots. Help?
EDIT:
Thomas Kuhn your new method actually solved all of my problem until I put my labels down and tried to use plt.tight_layout() to sort out the overlaps. It seems that if I put down the specific parameters in plt.tight_layout(pad=i, w_pad=0, h_pad=0) then the colorbar starts to misbehave. I'll now explain my problem.
I have made some changes to your new method so that it suits what I want, like this
def test_hist_2d(x_data, y_data, x_labels, y_labels, titles):
nrows, ncols = 2, 2
fig, axes = plt.subplots(nrows, ncols, sharex=True, sharey=True)
##produce the actual data and compute the histograms
mappables=[]
for (i, j), ax in np.ndenumerate(axes):
H, xedges, yedges = np.histogram2d(x_data[i][j], y_data[i][j], bins=50, range=[[-2, 2],[-2, 2]])
ax.set_title(titles[i][j], fontsize=12)
ax.set_xlabel(x_labels[i][j])
ax.set_ylabel(y_labels[i][j])
ax.set_aspect("equal")
mappables.append(H)
##the min and max values of all histograms
vmin = np.min(mappables)
vmax = np.max(mappables)
##second loop for visualisation
for ax, H in zip(axes.ravel(), mappables):
im = ax.imshow(H,vmin=vmin, vmax=vmax, extent=[-2,2,-2,2])
##colorbar using solution from linked question
fig.colorbar(im,ax=axes.ravel())
plt.show()
# plt.tight_layout
# plt.tight_layout(pad=i, w_pad=0, h_pad=0)
Now if I try to generate my data, in this case:
phi, cos_theta = get_angles(runs)
detector_x1, detector_y1, smeared_x1, smeared_y1 = detection_vectorised(1.5, cos_theta, phi)
detector_x2, detector_y2, smeared_x2, smeared_y2 = detection_vectorised(1, cos_theta, phi)
detector_x3, detector_y3, smeared_x3, smeared_y3 = detection_vectorised(0.5, cos_theta, phi)
detector_x4, detector_y4, smeared_x4, smeared_y4 = detection_vectorised(0, cos_theta, phi)
Here detector_x, detector_y, smeared_x, smeared_y are all lists of data point
So now I put them into 2x2 lists so that they can be unpacked suitably by my plotting function, as such:
data_x = [[detector_x1, detector_x2], [detector_x3, detector_x4]]
data_y = [[detector_y1, detector_y2], [detector_y3, detector_y4]]
x_labels = [["x positions(m)", "x positions(m)"], ["x positions(m)", "x positions(m)"]]
y_labels = [["y positions(m)", "y positions(m)"], ["y positions(m)", "y positions(m)"]]
titles = [["0.5m from detector", "1.0m from detector"], ["1.5m from detector", "2.0m from detector"]]
I now run my code with
test_hist_2d(data_x, data_y, x_labels, y_labels, titles)
with just plt.show() turned on, it gives this:
which is great because data and visual wise, it is exactly what I want i.e. the colormap corresponds to all 4 histograms. However, since the labels are overlapping with the titles, I thought I would just run the same thing but this time with plt.tight_layout(pad=a, w_pad=b, h_pad=c) hoping that I would be able to adjust the overlapping labels problem. However this time it doesn't matter how I change the numbers a, b and c, I always get my colorbar lying on the second column of graphs, like this:
Now changing a only makes the overall subplots bigger or smaller, and the best I could do was to adjust it with plt.tight_layout(pad=-10, w_pad=-15, h_pad=0), which looks like this
So it seems that whatever your new method is doing, it made the whole plot lost its adjustability. Your solution, as wonderful as it is at solving one problem, in return, created another. So what would be the best thing to do here?
Edit 2:
Using fig, axes = plt.subplots(nrows, ncols, sharex=True, sharey=True, constrained_layout=True) along with plt.show() gives
As you can see there's still a vertical gap between the columns of subplots for which not even using plt.subplots_adjust() can get rid of.
Edit:
As has been noted in the comments, the biggest problem here is actually to make the colorbar for many histograms meaningful, as ax.hist2d will always scale the histogram data it receives from numpy. It may therefore be best to first calculated the 2d histogram data using numpy and then use again imshow to visualise it. This way, also the solutions of the linked question can be applied. To make the problem with the normalisation more visible, I put some effort into producing some qualitatively different 2d histograms using scipy.stats.multivariate_normal, which shows how the height of the histogram can change quite dramatically even though the number of samples is the same in each figure.
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import gridspec as gs
from scipy.stats import multivariate_normal
##opening figure and axes
nrows=3
ncols=3
fig, axes = plt.subplots(nrows,ncols)
##generate some random data for the distributions
means = np.random.rand(nrows,ncols,2)
sigmas = np.random.rand(nrows,ncols,2)
thetas = np.random.rand(nrows,ncols)*np.pi*2
##produce the actual data and compute the histograms
mappables=[]
for mean,sigma,theta in zip( means.reshape(-1,2), sigmas.reshape(-1,2), thetas.reshape(-1)):
##the data (only cosmetics):
c, s = np.cos(theta), np.sin(theta)
rot = np.array(((c,-s), (s, c)))
cov = rot#np.diag(sigma)#rot.T
rv = multivariate_normal(mean,cov)
data = rv.rvs(size = 10000)
##the 2d histogram from numpy
H,xedges,yedges = np.histogram2d(data[:,0], data[:,1], bins=50, range=[[-2, 2],[-2, 2]])
mappables.append(H)
##the min and max values of all histograms
vmin = np.min(mappables)
vmax = np.max(mappables)
##second loop for visualisation
for ax,H in zip(axes.ravel(),mappables):
im = ax.imshow(H,vmin=vmin, vmax=vmax, extent=[-2,2,-2,2])
##colorbar using solution from linked question
fig.colorbar(im,ax=axes.ravel())
plt.show()
This code produces a figure like this:
Old Answer:
One way to solve your problem is to generate the space for your colorbar explicitly. You can use a GridSpec instance to define how wide your colorbar should be. Below your subplots_hist_2d() function with a few modifications. Note that your use of tight_layout() shifted the colorbar into a funny place, hence the replacement. If you want the plots closer to each other, I'd rather recommend to play with the aspect ratio of the figure.
def subplots_hist_2d(x_data, y_data, x_labels, y_labels, titles):
## fig, a = plt.subplots(2, 2)
fig = plt.figure()
g = gs.GridSpec(nrows=2, ncols=3, width_ratios=[1,1,0.05])
a = [fig.add_subplot(g[n,m]) for n in range(2) for m in range(2)]
cax = fig.add_subplot(g[:,2])
## a = a.ravel()
for idx, ax in enumerate(a):
image = ax.hist2d(x_data[idx], y_data[idx], bins=50, range=[[-2, 2],[-2, 2]])
ax.set_title(titles[idx], fontsize=12)
ax.set_xlabel(x_labels[idx])
ax.set_ylabel(y_labels[idx])
ax.set_aspect("equal")
## cb = fig.colorbar(image[-1],ax=a)
cb = fig.colorbar(image[-1], cax=cax)
cb.set_label("Intensity", rotation=270)
# pad = how big overall pic is
# w_pad = how separate they're left to right
# h_pad = how separate they're top to bottom
## plt.tight_layout(pad=-1, w_pad=-10, h_pad=0.5)
fig.tight_layout()
Using this modified function, I get the following output:
I am trying to make a 2x2 subplot, with each of the inner subplots consisting of two x axes and two y axes; the first xy correspond to a linear scale and the second xy correspond to a logarithmic scale. Before assuming this question has been asked before, the matplotlib docs and examples show how to do multiple scales for either x or y but not both. This post on stackoverflow is the closest thing to my question, and I have attempted to use this idea to implement what I want. My attempt is below.
Firstly, we initialize data, ticks, and ticklabels. The idea is that the alternate scaling will have the same tick positions with altered ticklabels to reflect the alternate scaling.
import numpy as np
import matplotlib.pyplot as plt
# xy data (global)
X = np.linspace(5, 13, 9, dtype=int)
Y = np.linspace(7, 12, 9)
# xy ticks for linear scale (global)
dtick = dict(X=X, Y=np.linspace(7, 12, 6, dtype=int))
# xy ticklabels for linear and logarithmic scales (global)
init_xt = 2**dtick['X']
dticklabel = dict(X1=dtick['X'], Y1=dtick['Y']) # linear scale
dticklabel['X2'] = ['{}'.format(init_xt[idx]) if idx % 2 == 0 else '' for idx in range(len(init_xt))] # log_2 scale
dticklabel['Y2'] = 2**dticklabel['Y1'] # log_2 scale
Borrowing from the linked SO post, I will plot the same thing in each of the 4 subplots. Since similar methods are used for both scalings in each subplot, the method is thrown into a for-loop. But we need the row number, column number, and plot number for each.
# 2x2 subplot
# fig.add_subplot(row, col, pnum); corresponding iterables = (irows, icols, iplts)
irows = (1, 1, 2, 2)
icols = (1, 2, 1, 2)
iplts = (1, 2, 1, 2)
ncolors = ('red', 'blue', 'green', 'black')
Putting all of this together, the function to output the plot is below:
def initialize_figure(irows, icols, iplts, ncolors, figsize=None):
""" """
fig = plt.figure(figsize=figsize)
for row, col, pnum, color in zip(irows, icols, iplts, ncolors):
ax1 = fig.add_subplot(row, col, pnum) # linear scale
ax2 = fig.add_subplot(row, col, pnum, frame_on=False) # logarithmic scale ticklabels
ax1.plot(X, Y, '-', color=color)
# ticks in same positions
for ax in (ax1, ax2):
ax.set_xticks(dtick['X'])
ax.set_yticks(dtick['Y'])
# remove xaxis xtick_labels and labels from top row
if row == 1:
ax1.set_xticklabels([])
ax2.set_xticklabels(dticklabel['X2'])
ax1.set_xlabel('')
ax2.set_xlabel('X2', color='gray')
# initialize xaxis xtick_labels and labels for bottom row
else:
ax1.set_xticklabels(dticklabel['X1'])
ax2.set_xticklabels([])
ax1.set_xlabel('X1', color='black')
ax2.set_xlabel('')
# linear scale on left
if col == 1:
ax1.set_yticklabels(dticklabel['Y1'])
ax1.set_ylabel('Y1', color='black')
ax2.set_yticklabels([])
ax2.set_ylabel('')
# logarithmic scale on right
else:
ax1.set_yticklabels([])
ax1.set_ylabel('')
ax2.set_yticklabels(dticklabel['Y2'])
ax2.set_ylabel('Y2', color='black')
ax1.tick_params(axis='x', colors='black')
ax1.tick_params(axis='y', colors='black')
ax2.tick_params(axis='x', colors='gray')
ax2.tick_params(axis='y', colors='gray')
ax1.xaxis.tick_bottom()
ax1.yaxis.tick_left()
ax1.xaxis.set_label_position('top')
ax1.yaxis.set_label_position('right')
ax2.xaxis.tick_top()
ax2.yaxis.tick_right()
ax2.xaxis.set_label_position('top')
ax2.yaxis.set_label_position('right')
for ax in (ax1, ax2):
ax.set_xlim([4, 14])
ax.set_ylim([6, 13])
fig.tight_layout()
plt.show()
plt.close(fig)
Calling initialize_figure(irows, icols, iplts, ncolors) produces the figure below.
I am applying the same xlim and ylim so I do not understand why the subplots are all different sizes. Also, the axis labels and axis ticklabels are not in the specified positions (since fig.add_subplot(...) indexing starts from 1 instead of 0.
What is my mistake and how can I achieve the desired result?
(In case it isn't clear, I am trying to put the xticklabels and xlabels for the linear scale on the bottom row, the xticklabels and xlabels for the logarithmic scale on the top row, the 'yticklabelsandylabelsfor the linear scale on the left side of the left column, and the 'yticklabels and ylabels for the logarithmic scale on the right side of the right column. The color='black' kwarg corresponds to the linear scale and the color='gray' kwarg corresponds to the logarithmic scale.)
The irows and icols lists inn the code do not serve any purpose. To create 4 subplots in a 2x2 grid you would loop over the range(1,5),
for pnum in range(1,5):
ax1 = fig.add_subplot(2, 2, pnum)
This might not be the only problem in the code, but as long as the subplots aren't created correctly it's not worth looking further down.