Significant delays when an app with a signed component starts (should we sign components?) - delay

We have ActiveX components (OCXs/DLLs) and .NET components (DLLs) used by our customers to build end-user apps for the Windows platform. All these components are digitally signed before they reach the customer's computer.
One of our customers asked us not to sign our components because this can cause significant delays (up to 2 minutes) when an app with our component starts. One of the possible reason: a server used to check the digital sign is inaccessible for some reasons. This was the case not only for our components, but for components from other vendors too.
My questions:
Why such a delay may occur?
Is it ok not to sign binary components?

Related

Is it possible to find the origin of a request in nestjs? [duplicate]

Is there any way to restrict post requests to my REST API only to requests coming from my own mobile app binary? This app will be distributed on Google Play and the Apple App Store so it should be implied that someone will have access to its binary and try to reverse engineer it.
I was thinking something involving the app signatures, since every published app must be signed somehow, but I can't figure out how to do it in a secure way. Maybe a combination of getting the app signature, plus time-based hashes, plus app-generated key pairs and the good old security though obscurity?
I'm looking for something as fail proof as possible. The reason why is because I need to deliver data to the app based on data gathered by the phone sensors, and if people can pose as my own app and send data to my api that wasn't processed by my own algorithms, it defeats its purpose.
I'm open to any effective solution, no matter how complicated. Tin foil hat solutions are greatly appreciated.
Any credentials that are stored in the app can be exposed by the user. In the case of Android, they can completely decompile your app and easily retrieve them.
If the connection to the server does not utilize SSL, they can be easily sniffed off the network.
Seriously, anybody who wants the credentials will get them, so don't worry about concealing them. In essence, you have a public API.
There are some pitfalls and it takes extra time to manage a public API.
Many public APIs still track by IP address and implement tarpits to simply slow down requests from any IP address that seems to be abusing the system. This way, legitimate users from the same IP address can still carry on, albeit slower.
You have to be willing to shut off an IP address or IP address range despite the fact that you may be blocking innocent and upstanding users at the same time as the abusers. If your application is free, it may give you more freedom since there is no expected level of service and no contract, but you may want to guard yourself with a legal agreement.
In general, if your service is popular enough that someone wants to attack it, that's usually a good sign, so don't worry about it too much early on, but do stay ahead of it. You don't want the reason for your app's failure to be because users got tired of waiting on a slow server.
Your other option is to have the users register, so you can block by credentials rather than IP address when you spot abuse.
Yes, It's public
This app will be distributed on Google Play and the Apple App Store so it should be implied that someone will have access to its binary and try to reverse engineer it.
From the moment its on the stores it's public, therefore anything sensitive on the app binary must be considered as potentially compromised.
The Difference Between WHO and WHAT is Accessing the API Server
Before I dive into your problem I would like to first clear a misconception about who and what is accessing an API server. I wrote a series of articles around API and Mobile security, and in the article Why Does Your Mobile App Need An Api Key? you can read in detail the difference between who and what is accessing your API server, but I will extract here the main takes from it:
The what is the thing making the request to the API server. Is it really a genuine instance of your mobile app, or is it a bot, an automated script or an attacker manually poking around your API server with a tool like Postman?
The who is the user of the mobile app that we can authenticate, authorize and identify in several ways, like using OpenID Connect or OAUTH2 flows.
Think about the who as the user your API server will be able to Authenticate and Authorize access to the data, and think about the what as the software making that request in behalf of the user.
So if you are not using user authentication in the app, then you are left with trying to attest what is doing the request.
Mobile Apps should be as much dumb as possible
The reason why is because I need to deliver data to the app based on data gathered by the phone sensors, and if people can pose as my own app and send data to my api that wasn't processed by my own algorithms, it defeats its purpose.
It sounds to me that you are saying that you have algorithms running on the phone to process data from the device sensors and then send them to the API server. If so then you should reconsider this approach and instead just collect the sensor values and send them to the API server and have it running the algorithm.
As I said anything inside your app binary is public, because as yourself said, it can be reverse engineered:
should be implied that someone will have access to its binary and try to reverse engineer it.
Keeping the algorithms in the backend will allow you to not reveal your business logic, and at same time you may reject requests with sensor readings that do not make sense(if is possible to do). This also brings you the benefit of not having to release a new version of the app each time you tweak the algorithm or fix a bug in it.
Runtime attacks
I was thinking something involving the app signatures, since every published app must be signed somehow, but I can't figure out how to do it in a secure way.
Anything you do at runtime to protect the request you are about to send to your API can be reverse engineered with tools like Frida:
Inject your own scripts into black box processes. Hook any function, spy on crypto APIs or trace private application code, no source code needed. Edit, hit save, and instantly see the results. All without compilation steps or program restarts.
Your Suggested Solutions
Security is all about layers of defense, thus you should add as many as you can afford and required by law(e.g GDPR in Europe), therefore any of your purposed solutions are one more layer the attacker needs to bypass, and depending on is skill-set and time is willing to spent on your mobile app it may prevent them to go any further, but in the end all of them can be bypassed.
Maybe a combination of getting the app signature, plus time-based hashes, plus app-generated key pairs and the good old security though obscurity?
Even when you use key pairs stored in the hardware trusted execution environment, all an attacker needs to do is to use an instrumentation framework to hook in the function of your code that uses the keys in order to extract or manipulate the parameters and return values of the function.
Android Hardware-backed Keystore
The availability of a trusted execution environment in a system on a chip (SoC) offers an opportunity for Android devices to provide hardware-backed, strong security services to the Android OS, to platform services, and even to third-party apps.
While it can be defeated I still recommend you to use it, because not all hackers have the skill set or are willing to spend the time on it, and I would recommend you to read this series of articles about Mobile API Security Techniques to learn about some complementary/similar techniques to the ones you described. This articles will teach you how API Keys, User Access Tokens, HMAC and TLS Pinning can be used to protect the API and how they can be bypassed.
Possible Better Solutions
Nowadays I see developers using Android SafetyNet to attest what is doing the request to the API server, but they fail to understand it's not intended to attest that the mobile app is what is doing the request, instead it's intended to attest the integrity of the device, and I go in more detail on my answer to the question Android equivalent of ios devicecheck. So should I use it? Yes you should, because it is one more layer of defense, that in this case tells you that your mobile app is not installed in a rooted device, unless SafetyNet has been bypassed.
Is there any way to restrict post requests to my REST API only to requests coming from my own mobile app binary?
You can allow the API server to have an high degree of confidence that is indeed accepting requests only from your genuine app binary by implementing the Mobile App Attestation concept, and I describe it in more detail on this answer I gave to the question How to secure an API REST for mobile app?, specially the sections Securing the API Server and A Possible Better Solution.
Do you want to go the Extra Mile?
In any response to a security question I always like to reference the excellent work from the OWASP foundation.
For APIS
OWASP API Security Top 10
The OWASP API Security Project seeks to provide value to software developers and security assessors by underscoring the potential risks in insecure APIs, and illustrating how these risks may be mitigated. In order to facilitate this goal, the OWASP API Security Project will create and maintain a Top 10 API Security Risks document, as well as a documentation portal for best practices when creating or assessing APIs.
For Mobile Apps
OWASP Mobile Security Project - Top 10 risks
The OWASP Mobile Security Project is a centralized resource intended to give developers and security teams the resources they need to build and maintain secure mobile applications. Through the project, our goal is to classify mobile security risks and provide developmental controls to reduce their impact or likelihood of exploitation.
OWASP - Mobile Security Testing Guide:
The Mobile Security Testing Guide (MSTG) is a comprehensive manual for mobile app security development, testing and reverse engineering.
No. You're publishing a service with a public interface and your app will presumably only communicate via this REST API. Anything that your app can send, anyone else can send also. This means that the only way to secure access would be to authenticate in some way, i.e. keep a secret. However, you are also publishing your apps. This means that any secret in your app is essentially being given out also. You can't have it both ways; you can't expect to both give out your secret and keep it secret.
Though this is an old post, I thought I should share the updates from Google in this regard.
You can actually ensure that your Android application is calling the API using the SafetyNet mobile attestation APIs. This adds a little overhead on the network calls and prevents your application from running in a rooted device.
I found nothing similar like SafetyNet for iOS. Hence in my case, I checked the device configuration first in my login API and took different measures for Android and iOS. In case of iOS, I decided to keep a shared secret key between the server and the application. As the iOS applications are a little bit difficult to reversed engineered, I think this extra key checking adds some protection.
Of course, in both cases, you need to communicate over HTTPS.
As the other answers and comments imply, you cant truly restrict API access to only your app but you can take different measures to reduce the attempts. I believe the best solution is to make requests to your API (from native code of course) with a custom header like "App-Version-Key" (this key will be decided at compile time) and make your server check for this key to decide if it should accept or reject. Also when using this method you SHOULD use HTTPS/SSL as this will reduce the risk of people seeing your key by viewing the request on the network.
Regarding Cordova/Phonegap apps, I will be creating a plugin to do the above mentioned method. I will update this comment when its complete.
there is nothing much you can do. cause when you let some one in they can call your APIs. the most you can do is as below:
since you want only and only your application (with a specific package name and signature) calls your APIs, you can get the signature key of your apk pragmatically and send is to sever in every API call and if thats ok you response to the request. (or you can have a token API that your app calls it every beginning of the app and then use that token for other APIs - though token must be invalidated after some hours of not working with)
then you need to proguard your code so no one sees what you are sending and how you encrypt them. if you do a good encrypt decompiling will be so hard to do.
even signature of apk can be mocked in some hard ways but its the best you can do.
Someone have looked at Firebase App Check ?
https://firebase.google.com/docs/app-check
Is there any way to restrict post requests to my REST API only to requests coming from my own mobile app binary?
I'm not sure if there is an absolute solution.
But, you can reduce unwanted requests.
Use an App Check:
The "Firebase App Check" can be used cross-platform (https://firebase.google.com/docs/app-check) - credit to #Xande-Rasta-Moura
iOS: https://developer.apple.com/documentation/devicecheck
Android: https://android-developers.googleblog.com/2013/01/verifying-back-end-calls-from-android.html
Use BasicAuth (for API requests)
Allow a user-agent header for mobile devices only (for API requests)
Use a robots.txt file to reduce bots
User-agent: *
Disallow: /

Can Mylar be hacked?

I'm interested in using Mylar for an upcoming project.
The promises that Mylar makes seem impressive. However, could a dev write a back-door attack into the code, that is allowed to run (verified by hash/signature), so that the data is compromised (likely via XSS)? Mylar documentation states:
"Mylar ensures that client-side application code is authentic, even if
the server is malicious."
The only way I can imagine this being protected against is for the browser itself to disallow outbound communication of unencrypted data. But, for that to happen, how can the app query the database, make calls back to the server (I understand that Mylar is best used with a browser side framework like Meteor, but still, Meteor needs to communicate with the server for certain tasks).
Is Mylar able to provide complete data security, even from the application developer/server admin?
Here is Mylar's claim (from http://www.mit.edu/~ralucap/mylar.pdf):
3.4 Threat model
Threats. Both the application and the database servers can be fully controlled by an adversary: the adversary may obtain all data
from the server, cause the server to send arbitrary responses to web
browsers, etc. This model subsumes a wide range of real-world security
problems, from bugs in server software to insider attacks. Mylar also
allows some user machines to be controlled by the adversary, and to
collude with the server. This may be either because the adversary is a
user of the application, or because the adversary broke into a user’s
machine. We call this adversary active, in contrast to a passive
adversary that eavesdrops on all information at the server, but does
not make any changes, so that the server responds to all client
requests as if it were not compromised.
Guarantees. Mylar protects a data item’s confidentiality in the face of arbitrary server compromises, as long as none of the users
with access to that data item use a compromised machine.
In this context, 'compromised machine' means the client machine/browser.
After re-reading the Mylar white paper, I see where the document states:
Assumptions. To provide the above guarantees, Mylar makes the
following assumptions. Mylar assumes that the web application as
written by the developer will not send user data or keys to
untrustworthy recipients, and cannot be tricked into doing so by
exploiting bugs (e.g., cross-site scripting). Our prototype of Mylar
is built on top of Meteor, a framework that helps programmers avoid
many common classes of bugs in practice.
Does this mean the way the application was written at the time of encryption, or at the time of attack? In other words, is the encrypted data somehow tied to a specific version of the application code? Elsewhere in the referenced Mylar white paper it indicates that the app code is verified against a hash signature.
If the app code can simply be hacked at the server, this reduces the value proposition greatly, as any attacker who gains access to the source code could modify the code and leach data as it is requested (at the browser). The Guarantee of "protecting confidentiality in the face of arbitrary server compromises" seems broad enough to include the idea of the attacker modifying the source code of the application, hence my confusion.
Also refer to section 6 in the white paper for more information. I believe the Mylar doc is conveying that it does mitigate compromised application code attacks. I'd really love to hear from a dev with authoritative understanding of Mylar.
... could a dev write a back-door attack into the code, that is allowed to run (verified by hash/signature), so that the data is compromised (likely via XSS)?
Yes, a developer could write a back-door into the code. There is no way to prevent that, because a developer could claim he's using Mylar although he doesn't or does use a compromised version. Note that Mylar doesn't say, it could prevent that. It's preventing attacks by server operators, for example if you host your application in a third-party cloud.
3 MYLAR ARCHITECTURE
There are three different parties in Mylar: the users, the web site owner, and the server operator. Mylar’s goal is to help the site owner protect the confidential data of users in the face of a malicious or compromised server operator.
If you don't trust the developers or web site owner, you have to check the client-side source code very time it's loaded.
Mylar documentation states: "Mylar ensures that client-side application code is authentic, even if the server is malicious."
The only way I can imagine this being protected against is for the browser itself to disallow outbound communication of unencrypted data. But, for that to happen, how can the app query the database, make calls back to the server [...]
Is Mylar able to provide complete data security, even from the application developer/server admin?
That's right, the browser won't send unencrypted data to the server (at least the data which you marked as secret). I can't provide a full explanation for how it allows a large subset of SQL functionality on encrypted data, because it's complicated. As Raluca Ada Popa explains in one of her presentations, data is encrypted several times with different algorithms, because each algorithm allows different operations on encrypted data (equality check, ordering, text search, ...). The MIT institute also developed CryptDB, which uses the same methodology but only protects the database server.
3.4 Threat model: Both the application and the database servers can be fully controlled by an adversary [...]
When an attacker controls the application server, he could exchange the whole application with his own, which mocks the original user interface. Here comes the browser plugin into play: The application is signed by the web site owner before it's deployed, so that the browser plugin may check the signature and alarm the user if the application was modified.
You might have noticed that Mylar needs the user to check authenticity himself. Other things that an user needs to be aware of:
Mylar applications must be loaded over a secure HTTPS connection.
Retrieved data must be signed by the expected user (for example a chat room must show who created it and the user has to check if someone tries to fake an existing room).
The client machine must not compromised.
...
Mylar assumes that the web application as written by the developer will not send user data or keys to untrustworthy recipients, and cannot be tricked into doing so by exploiting bugs (e.g., cross-site scripting).
Does this mean the way the application was written at the time of encryption, or at the time of attack?
They assume the application as delivered doesn't contain any bugs which could leak private data. Mylar doesn't prevent coding mistakes, it prevents untrusted modifications later on.
In other words, is the encrypted data somehow tied to a specific version of the application code? Elsewhere in the referenced Mylar white paper it indicates that the app code is verified against a hash signature.
If the app code can simply be hacked at the server, this reduces the value proposition greatly, as any attacker who gains access to the source code could modify the code and leach data as it is requested (at the browser).
Encrypted data isn't tied to a specific version. Each version of the application needs to be signed by the web site owner, so that the browser plugin may check it's signature and attacks would be obvious to users. A common dynamic web site wouldn't allow signing, because each user data is different and would modify the received code, therefore application code (HTML, JavaScript, ..) and data are strictly separated. After the application is loaded and it's signature was checked, data is retrieved via AJAX, whereas the AJAX response must not contain executable code (this is part of the Meteor framework, I can't tell anything about it).
Conclusion
If the web site owner himself is dishonest, you can't be sure about privacy. This is especially the case if governments are able to force the web site owner to cooperate.
Also Mylar doesn't prevent bugs, which could leak data. For example the simplest mistake would be that a developer forgot to mark a field as private.
When an attacker overtakes the application server, users are warned, but if they ignore it (for example they didn't install the browser plugin) their data could be intercepted.
If you want to outsource hosting of your application or you won't trust your own server operators, Mylar provides better security than any other framework I know of.

Tradeoffs of browser-based development vs. Smart Client

I've got an app that's been started on the Microsoft stack as a smart client (notionally WCF/WS enabled) with a small client app that gets deployed and the rest of the app running in our private cloud. It's only real dependency is internet connectivity, .net 4 and a windows operating system.
I am under pressure to convert over to a browser based architecture for all future development. Based on other web apps I've worked on, I'm concerned that the way that client IT organizations can control the browser, it will cause more problems down the line than what I really want to deal with.
Do you have experience making this kind of decision? What technical factors did you consider when deciding to go smart-client vs. browser? What resources were helpful in making this decision?
My app is a healthcare app targeted at healthcare providers (eg. hospitals), so everywhere I go, I have to worry about the Healthcare CIO looking over my shoulder.
Interesting. Originally I'm from C# winform and WPF Desktop programmer, and later being assigned to do web development. Haven't touch Smart Client yet but I think it should almost be the same with Native app. Based on experience, the technical things to consider are:
Multi browser support
Especially for reporting and graphic processing, without some library / plugins / framework for your component, it will be insanely hard to keep your app multibrowser. Especially in css style and less in javascript.
Client programming(javascript)
You will lose the ability to create controls and animation using C# controls. Instead you must using javascript (jquery or other library) in exchange. Javascript is not fully OOP, and intepret language (no compile error), making it harder (maybe there is some framework like coffeeScript which I haven't yet explore). In addition, it is harder to make since it will need server request / response activity in between the process, which I will describe later.
Request / Response Client-Server Architecture
This means that most process in client will need to request for the server (request for data to display, request to modify the data, etc). It also means that you lose the ability of control event, even if you use asp.net webform (it still need some tweaks for the event to work). However I assume you already used the WCF so this kind of architecture must be that hard.
Security
Don't keep important information such as password, etc in client (hidden field, javascript variable, etc). The concept should be the same with multitenant client, however in browser, user has free access to debug your webpage.
Concurrent and Multithreading
In browser, it is easier for multitab page and concurrent process will be very highly to occur. Your code must able to handle the multi threading for client side. For server side, you can still use your WCF to handle concurrencies.
My 2 cents.
Obviously the web application has its own challenges. I hope this link can help you in some aspects: http://msdn.microsoft.com/en-us/library/ee658099.aspx
Along with those you need to focus on non-function requirements like extensibility and scalability etc. too.

How can a website prevent a user from accessing it using different PCs?

I was signing up for a paid website, and the terms of service included a clause that says I may access the website using only the PC I used when I signed up for it (I assume this is to prevent me from spreading my user/password around for friends, etc.).
I was wondering, is enforcing this clause technologically possible, without installing third party software on a user PC? If so, by what methods? How can a user potentially fool such system (for example, if his "sign up PC" dies)?

send sms j2me appear promt message

When I am sending sms via j2me application, before message sent it appears question for can I use internet to sent message. Is it possible to exit this question to not appear?
This is happening because you Accessing HTTP & SMS API. For using such API you need to signed your Java ME Application. For Signed a the Java ME Application, you need to purchase Signing Certificate from VeriSign or Thawte Site by paying the Fees.
Plesae visit this link
For VeriSign's certificate, they costs 20K per certificate.
I think you can skip the prompt but your application must be signed. However, even if your application is signed, on some devices, the prompt will still appear once. This usually (or always) occurs on the session's first use of the Wireless Messaging API. This happens because the access to this API is set to something like "Ask first time."
If your app is signed, you can manually set the access to the wireless network settings to (something like) "Always allow." If it is set to (something like) this, the prompt will not appear.
For apps that are not signed, the option "Always allow" is not available. However, on most devices, the next best option is available: "Ask first time."
Well, the bad thing is, you are going to set it manually. The good thing, however, is that you are not going spend so much money just to set it to "Ask first time." :D
J2ME by the platform design have the drawbacks in which users of the applications are asked to select yes or no for any attempt to use any of the secure API's. Some devices gives this alerts in such a way which will make the end user to think if he should go ahead or stop it there. By digitally signing the application, one can reduce the alerts to levels depending on the device KVM implementation and the number of secure APIs in use.
In some device having Symbian OS Feature Pack 1, the prompts continue even if the code is signed.
This behavior of J2ME makes the applications less developer friendly and less user friendly. I think this is a wrong strategy and model adopted by SUN. There is some thing called Verified by Java in which you can get your application signed using a certificate which will make the application work seamlessly and without prompts in the end user device but unfortunately the process of getting that certification is expensive and not practical. The only advantage of J2ME platform is that it allows less chances of virus or malware code to be executed on the end user device. I think the trade off between security and ease of user use is not worked well and that is the reason we don't see very good apps in J2ME.
In contrast, Android for example, lets the user see all the permissions prior to installation of the app and the user is not bothered at run time when those secure API are used. That is the reason we see millions of apps there and not in J2ME. We can always say this approach had led to many malware types of applications in the end android user device but that is how it goes, people need to have smooth apps running and are happy with them.

Resources