I bought one bluetooth receiver for my garage and my phone will connect to it from my house (250 feet away) which was too far and interfering with use in the house devices.
I recently purchased another that had problems with connection cutting out at 15 feet inside of the garage.
I'd like to be able to adjust that reception range and taylor it to my environment. Is this an option with any of the receivers?
Related
A while ago I successfully used a Sparkfun Polar Heart Rate Monitor Interface (SEN-08661) to convert a 'Spirit' cross trainer to pick up the Bluetooth signal from my Polar H10 chest strap instead of needing to use their proprietary wireless chest strap. (This was so I could use just one strap for both my phone and the machine).
The SEN-08661 interface board, often used with Arduino or Raspberry pi systems, receives the Bluetooth HR signal from the chest strap and outputs a simple 5v pulse for each beat, which I fed into the training machine in place of the receiver that was in there originally.
I now want to repeat this with a Lifefitness R1 recumbent bike but unfortunately it seems the SEN-08661 board is no longer available anywhere.
Does anyone know of a similar development board that I could use instead to pick up a Bluetooth HR signal from a Polar strap and output a pulse train?
Every search I do brings up loads of Bluetooth HR monitors but no Bluetooth HR receivers.
I realise this is not really a programming question but I'm hoping some programmers might know where to get the hardware (in the UK) from which to get the signal to process using programming!
I'm looking for answers on the net for 2 days, and it seems like I can't find my answer so I finally post it here hoping I just mess something.
I'm conceiving a BLE slave device to log humidity in a room twice a day. This device has to run for at least 2 Years before getting recharged.
What is the BLE logic to ensure long battery life ?
1) Is a long advertisement / connection interval enough ?
2) Do I need to implement a RTC with interrupt to wake up my device and start advertising to get connected?
3) Do I have to use advertising packets only, and include my data into it?
I think I just miss something about bluetooth low energy, and it is a problem to create a ble device.
Thank you very much for you help, and have a good day !
You could calculate power consumption at https://devzone.nordicsemi.com/power/ for Nordic's chip. If the device does not advertise or has an active connection (i.e. it's just sleeping), it consumes almost no power at all and will definitely run for 2 years even on a CR2016 battery. So if possible, if you have for example a button that can start the advertising only when needed, that would be good.
Otherwise if you want it to be always available you must advertise. How long the advertisement interval should be depends on how long connection setup latency you want. If you have a BLE scanner that scans 100% of the time the advertisement interval will be equal to the connection setup time. If you have a low-power BLE scanner that only scans for example 10% of the time you'll have to multiply your advertitsement interval by 10 to get the expected setup time. It all comes down to simple math :)
I'd suggest create a connection rather than just putting the data in the advertisement packets since then you can acknowledge that the data has been arrived.
Note that if you have a connection interval of 4 seconds and have a stable constant connection you can get several years battery time on a coin cell battery.
I'm implementing a LIN protocol on a Linux SBC that transmits over a UART. I don't have time to develop a complete LIN stack, so I'm just implementing a frame structure for messages as defined by the protocol. The problem is that the protocol requires a "Break" field which makes the slave devices on the bus listen. This field consists of zeros for 13 bit-times. Any ideas how to send zeros 13 bit-times over UART, when serial data transmission requires complete bytes?
Per Wiki:
LIN (Local Interconnect Network) is a serial network protocol used for
communication between components in vehicles. The need for a cheap
serial network arose as the technologies and the facilities
implemented in the car grew, while the CAN bus was too expensive to
implement for every component in the car. European car manufacturers
started using different serial communication topologies, which led to
compatibility problems.
If you would have paid attention at class you would have known that:
Data is transferred across the bus in fixed form messages of
selectable lengths. The master task transmits a header that consists
of a break signal followed by synchronization and identifier fields.
The slaves respond with a data frame that consists of between 2, 4 and
8 data bytes plus 3 bytes of control information.
You should just send an echo of 0x0000 following by CR/LF.
I'm working on some home automation programs and one of the things I want to be able to do is detect when my 4th generation Apple TV has woken from sleep. This will generally only ever happen when someone pressed a button on its Siri remote to wake it up.
I have a PC (connected to the same TV as the Apple TV) that has a Pulse-Eight USB-CEC adapter, so naturally the first thing I tried was using CEC to determine when the Apple TV is awake. Unfortunately it's not reliable, since monitoring the Apple TV's power status to see when it wakes up produces false positives. (I should note that I do not have "Control TVs and Receivers" enabled on the Apple TV, and can't turn it on for the particular project I'm working on because I need the Apple TV to not change the TV's input.)
I'm trying to think of some other way to do this. I'm open to any possibilities, including things like:
Making use of private APIs on the Apple TV
Running an 'always on' program in the background of the Apple TV that sends a signal when the Apple TV wakes up, if that's even possible. (I suspect that it isn't.)
Monitoring the bluetooth communication between the Siri Remote and the Apple TV, if that's possible
Somehow filtering HDMI-CEC commands so that I can turn on 'Control TVs and Receivers', allow the Apple TV's CEC commands for turning on and off the TV, and exclude commands for changing the TV's input.
Any other method, no matter how hacky or ridiculous, as long as it works!
Does anyone have any suggestions? I'm running out of things to try!
I tried to post below on apple discussion / support communities but was told i don't have the right to post this content. Maybe someone in this group can succeed in doing it:
Apple TV 4 CEC integration is great when it works, but it doesn't work all the time and not with all the various equipment out there, you can do a search across forums and you will see lots of unhappy users. I would like to use a raspberry PI to detect when my AppleTV goes to sleep and wakes up and programmatically turn my tv on or off using its RS232C or custom CEC commands.
I used a bonjour services explorer and compared every single result between sleep and on states and there are no differences whatsoever. I would have expected Apple to welcome such automation projects and make this information readily available with a variable such as status: sleep or status: on.
Is there a way I could tell the two states apart via the network connection?
If not, could one build a TvOS app which runs on the background and makes this information available to clients somehow?
I finally found a method that seems to work consistently. This method is incredibly hacky and not at all the sort of way I'd prefer to do this, but it's the only one I've found so far that works consistently.
I have taken an old USB webcam and affixed it to the front of my Apple TV so that its lens is directly in front of the Apply TV's front facing light. Whenever the Apple TV is asleep, I simply check for the light turning on by taking images from the camera and analyzing their average luminosity. Since the lens is right next to the light, when it turns on it'll create a huge blown out white circle in the image that's incredibly easy to detect.
As long as the Apple TV is asleep, the light turning on seems to indicate 100% of the time that it has woken up. I have yet to find a single incident of either a false positive or false negative.
Since pressing buttons on the Siri remote causes this light to blink, this also means that I can detect buttons being pressed by looking for changes in the light while the Apple TV is awake. It's not 100% accurate, since some button presses are faster than the frame rate of my crappy old USB webcam, but it works well enough.
I would vastly prefer to find a better method of doing this, like making a request over the LAN to the Apple TV where the response clearly indicates it being awake or asleep, but so far it doesn't look like that's possible.
Here I am, six and a half years later, and I've finally found a better way to get the power state of my Apple TV.
I can simply use pyatv, which has a function named power_state that returns the Apple TV's current power state.
I would like to track a large number of beacons (~500) at once within a 50-100 m radius via an app on an iPhone (5s). I've had a look at the spec and online and I can't see if there is any limit on the number of beacons you can track at once using BLE. Does anyone know if there is limitation on the number of beacons you can track exists or if an iPhone 5s would be up to the task of tracking that many beacons?
You used the word track, but iOS has two different methods: monitoring and ranging.
You can set a maximum of 20 regions to monitor. (Found in documentation for the startMonitoringForRegion: method.) Region limits mostly come into play if your app is in the background. The OS will alert your app when you enter or leave a region that you're monitoring (give or take a few minutes). The OS will even launch your app just to let it know what happened (although only for a short time).
The other method is ranging, which is to find all the beacons within the Bluetooth range of the device (typically around 100 feet give or take). If your beacons are spread out over 100 miles, then you probably won't run into any practical limit here. I have not found any documentation for this, and I have only four beacons that I'm testing with, and four at a time works.
Here's one way to handle your situation. Make all your 500 beacons use the same UUID, and make a beacon region using initWithProximityUUID:identifier: method. (Identifier is just for you -- it doesn't affect anything). Starting monitoring for that beacon region. That way, your app will be notified whenever one of your 500 beacons are found (give or take a few minutes). Once notified, you can use startRangingBeaconsInRegion: to find all the beacons around that area, then use the major and minor values to figure out which beacons the user is near.
I'll add to Tim Tisdall's answer, which sets out the right framework. I can't speak to the specific capabilities of the iPhone 5s, or iOS in general, but I don't see any reason why it wouldn't return every ADV_IND packet (i.e. beacon transmission) that it receives.
The question is, will the 500 beacons be able to transmit their ADV_IND packets without collisions?
It takes about 0.128ms to transmit an ADV_IND packet. The time between advertising transmissions is configurable between 20ms and 10240ms (at intervals of 0.625ms), so the probability of collisions depends on the configuration of the beacons.
Based on the Poisson distribution, the probability of a collision for any given ADV_IND packet is 1-exp(-2*N*(0.128/AI)), where N is the number of beacons within range, AI is the time in milliseconds of the advertising interval (assuming all the beacons are configured the same), and the 0.128 is the time in milliseconds it takes to send the ADV_IND packet. (See http://www3.cs.stonybrook.edu/~jgao/CSE590-fall09/aloha-analysis.pdf if you want an explanation.)
For 500 beacons with the maximum advertising interval of about 10 seconds, there will be a collision about once every 81 packets (or about 6 out of 500). If you're willing to wait for a couple intervals (i.e. 30 seconds), there's a good chance you'll be able to receive all 500 ADV_IND packets.
On the other hand, if the advertising interval is smaller, say 500ms, you'll have a collision about 23% of the time (or 113 out of 500). You'd have to wait for several more intervals to improve the probability that you'd see the broadcasts from all the beacons.
The other way to look at it is that the more beacons you have, the longer you have to wait to make sure you receive all their packets. (The math to calculate the delay to receive the packets with a certain probability from the number of beacons and the advertising interval is too much for me today.)
One caveat: if you want to connect to these beacons, as opposed to just receiving the ADV_IND packet, that requires an exchange of two more packets on the advertising channels, and the probability of a collision in the advertising channels goes up a bit.
If I am reading your question right, you want to put all 500 iBeacons within 100 meters of each other, meaning their transmissions will overlap. You will probably run into radio congestion problems long before you run into any limitations of iOS7 or your phone.
I have successfully tested 20 iBeacons in close proximity without problems, but 500 iBeacons is an extreme density. this discussion on the hardware issue suggests you may run into trouble.
At a minimum, the collisions of the transmissions of 500 iBEacons will make it take longer for your iOS device to see each iBeacon. Normally, iOS7 provides a ranging update once per second for each iOS device, but you may find that you get updates much less often. It all depends on your application whether or not less frequent updates are acceptable.
Even if delays are acceptable, I would absolutely test this before counting on it working at all. Unfortunately, that means getting your hands on lots of iBeacons.
I don't agree. It is true that ble beacons only transmit advertising data, but the transmission of such data last about 3ms (considering three advertising channels).
Having 500 beacons, WITHOUT considering any collision, the scanner will takes 1.5s to see them all.
But, if all beacons are configured in same way (same advertising interval) it is inevitable to have collisions which lead to have undiscovered beacons. Even if the advertising interval is different between beacons collisions occur. To avoid collision probability one should use longer advertising interval, but this lead to longer discovery latency.
This reasoning is very raw, it doesn't take care of many effects, but is just an order of magnitude calculation.
By the way, the question is not easy, there are many parameters which play role, some are known some are unknown. But I'm working with ble since one year about and, to me, 500 is a huge number and there is the possibility that you don't see the majority of nodes because of collisions.
I was doing some research into iBeacon's because of this question (I had no idea what it was about).
It seems that on the "beacon" side of things all that happens is general advertising packets are sent out. It's similar to how a device advertises that you can connect to it. However, you don't actually connect to iBeacon's, it just reads those advertising packets. There's no built-in limitation on how many advertising packets a device can receive.
So, it wouldn't surprise me if 500 iBeacon's would run with no issues. The advertising packets are small and are spaced out (time wise, they are repeated every X ms). There's no communication going from the phone to the iBeacon, the phone is simply receiving the packets it hears. If there's interference on one packet it'll likely manage to get the next one.