I have three issues with Process.run that I don't understand.
when I use ps aux in my Linux shell I get a nicely formatted list of processes, when I do it inside Visual Studio I get that as one huge string, I would like to create a data class, so I can map those values.
ie MEM CPU, so later I can do myobjec.CPU and I can see how much CPU the process uses with certain PID.
Second problem I would like to monitor this data so that it's updated every 0.5s. But with this technique of me fetching string, formatting string and then outputting that in UI, and doing that every 0.5 seconds sounds insane.
executing something like ps -U \$USER u in Process.run does not work since it outputs an actual string $USER instead of the name of the current user
so far I have two attempts
Future<List<List<String>>> processPlayground() async {
// This works on Windows/Linux/Mac
var shell = Shell(workingDirectory: "/");
List<List<String>> main = [];
List<Data> dataList = [];
Data? dt;
await shell.run('''
ps -U moonlight u
''').then((value) {
for (var element in value.outLines) {
main.add(element.replaceAll(_whitespaceRE, " ").split(" ").toList());
}
});
return main;
}
}
this works somewhat I have data class where I define, mem, CPU, user and so on and then I format this and present it in flutter UI, but it's very slow, and doing this every 0.5 is inefficient, UI lags.
I have also this :
test() async {
var process = await Process.start("ps", ["aux"]);
process.stdout.transform(utf8.decoder).forEach((element) {
sideList.add(element);
});
}
tz() {
print(sideList[0]);
mainList.add(sideList[0].replaceAll(_whitespaceRE, " ").split(" ").toList());
print(mainList[0]);
}
But here formatting somehow does not work, but here I also don't run these commands in a shell, don't know if that does make a difference.
TLDR
I need a way to get the list of processes, that gets updated every 0.5 seconds with current values, and I need later to have a way to put that in a table for further manipulation. In a similar way that Task Manager on Windows does, or System Monitor on Gnome does.
or should I use a different approach?
Related
I have a list of accounts and perform a hashjoin on ticks and return the accounts with ticks data. But after hashjoin I have drainTo lListJet and then read it with DistributedStream and return it.
public List<Account> populateTicksInAccounts(List<Account> accounts) {
...
...
Pipeline p = Pipeline.create();
BatchSource<Tick> ticksSource = Sources.list(TICKS_LIST_NAME);
BatchSource<Account> accountSource = Sources.fromProcessor(AccountProcessor.of(accounts));
p.drawFrom(ticksSource)
.hashJoin(p.drawFrom(accountSource), JoinClause.joinMapEntries(Tick::getTicker), accountMapper())
.drainTo(Sinks.list(TEMP_LIST));
jet.newJob(p).join();
IListJet<Account> list = jet.getList(TEMP_LIST);
return DistributedStream.fromList(list).collect(DistributedCollectors.toIList());
}
Is it possible to drainTo to java List instead of lListJet after performing a hashjoin?
Something like below is possible?
IListJet<Account> accountWithTicks = new ArrayList<>();
p.drawFrom(ticksSource)
.hashJoin(p.drawFrom(accountSource), JoinClause.joinMapEntries(Tick::getTicker), accountMapper())
.drainTo(<CustomSinkProcessor(accountWithTicks)>);
return accountWithTicks;
where in CustomSinkProcessor will take empty java list and return with the accounts?
Keep in mind that the code you submit to Jet for execution runs outside the process where you submit it from. While it would be theoretically possible to provide the API you're asking for, under the hood it would just have to perform some tricks to run the code on each member of the cluster, let all members send their results to one place, and fill up a list to return to you. It would go against the nature of distributed computing.
If you think it will help the readability of your code, you can write a helper method such as this:
public <T, R> List<R> drainToList(GeneralStage<T> stage) {
String tmpListName = randomListName();
SinkStage sinkStage = stage.drainTo(Sinks.list(tmpListName));
IListJet<R> tmpList = jet.getList(tmpListName);
try {
jet.newJob(sinkStage.getPipeline()).join();
return new ArrayList<>(tmpList);
} finally {
tmpList.destroy();
}
}
Especially note the line
return new ArrayList<>(tmpList);
as opposed to your
IListJet<Account> list = jet.getList(TEMP_LIST);
return DistributedStream.fromList(list).collect(DistributedCollectors.toIList());
This just copies one Hazelcast list to another one and returns a handle to it. Now you have leaked two lists in the Jet cluster. They don't automatically disappear when you stop using them.
Even the code I provided can still be leaky. The JVM process that runs it can die during Job.join() without reaching finally. Then the temporary list lingers on.
No, it's not, due to the distributed nature of Jet. The sink will execute in multiple parallel processors (workers). It can't add to plain Collection. The sink has to be able to insert items on multiple cluster members.
The idea is to:
Measure usedJSHeapSize before starting the test.
Measure usedJSHeapSize after completing the test.
Comparing values from 1 and 2 and if the size increases above a defined threshold, then fail the scenario.
So far I have tried:
SG Protractor Tools (https://github.com/SunGard-Labs/sg-protractor-tools) which allow to repeat the same scenario several times and find the memory growth. I have discarded it since it does not allow checking memory usage for a single scenario (https://github.com/SunGard-Labs/sg-protractor-tools/issues/3).
Extracting the memory values from the browser object, which does not seem to work (or I could not get to work) to integrate with the specs -> Assign a value returned from a promise to a global variable
Any other ideas?
This can be done by invoking browser.executeScript()
Use window.performance.memory for Chrome to fetch the performance parameters
The below code worked all good for me.
https://docs.webplatform.org/wiki/apis/timing/properties/memory
it('Dummy Test', function(){
//Fetch the browser memory parameters before execution
browser.executeScript('return window.performance.memory').then(function(memoryInfo){
console.log(memoryInfo)
var beforejsHeapSizeLimit = memoryInfo.jsHeapSizeLimit;
var beforeusedJSHeapSize = memoryInfo.usedJSHeapSize;
var beforetotalJSHeapSize = memoryInfo.totalJSHeapSize;
// Have all your code to open browser .. navigate pages etc
browser.driver.get("https://wordpress.com/");
browser.driver.get("http://www.adobe.com/software/flash/about/");
// Once you are done compare before and after values
//Fetch the browser memory parameters after execution and compare
browser.executeScript('return window.performance.memory').then(function(aftermemoryInfo) {
console.log(aftermemoryInfo)
var afterjsHeapSizeLimit = aftermemoryInfo.jsHeapSizeLimit;
var afterusedJSHeapSize = aftermemoryInfo.usedJSHeapSize;
var aftertotalJSHeapSize = aftermemoryInfo.totalJSHeapSize;
expect((parseInt(afterusedJSHeapSize)-parseInt(beforeusedJSHeapSize))<10000000).toBe.true;
});
});
});
I run my bot in a public channel with hundreds of users. Yesterday a person came in and just abused it.
I would like to let anyone use the bot, but if they spam commands consecutively and if they aren't a bot "owner" like me when I debug then I would like to add them to an ignored list which expires in an hour or so.
One way I'm thinking would be to save all commands by all users, in a dictionary such as:
({
'meder#freenode': [{command:'.weather 20851', timestamp: 209323023 }],
'jack#efnet': [{command:'.seen john' }]
})
I would setup a cron job to flush this out every 24 hours, but I would basically determine if a person has made X number of commands in a duration of say, 15 seconds and add them to an ignore list.
Actually, as I'm writing this answer I thought of a better idea.. maybe instead of storing each users commands, just store the the bot's commands in a list and keep on pushing until it reaches a limit of say, 15.
lastCommands = [], limit = 5;
function handleCommand( timeObj, action ) {
if ( lastCommands.length < limit ) {
action();
} else {
// enumerate through lastCommands and compare the timestamps of all 5 commands
// if the user is the same for all 5 commands, and...
// if the timestamps are all within the vicinity of 20 seconds
// add the user to the ignoreList
}
}
watch_for('command', function() {
handleCommand({timestamp: 2093293032, user: user}, function(){ message.say('hello there!') })
});
I would appreciate any advice on the matter.
Here's a simple algorithm:
Every time a user sends a command to the bot, increment a number that's tied to that user. If this is a new user, create the number for them and set it to 1.
When a user's number is incremented to a certain value (say 15), set it to 100.
Every <period> seconds, run through the list and decrement all the numbers by 1. Zero means the user's number can be freed.
Before executing a command and after incrementing the user's counter, check to see if it exceeds your magic max value (15 above). If it does, exit before executing the command.
This lets you rate limit actions and forgive excesses after a while. Divide your desired ban length by the decrement period to find the number to set when a user exceeds your threshold (100 above). You can also add to the number if a particular user keeps sending commands after they've been banned.
Well Nathon has already offered a solution, but it's possible to reduce the code that's needed.
var user = {};
user.lastCommandTime = new Date().getTime(); // time the user send his last command
user.commandCount = 0; // command limit counter
user.maxCommandsPerSecond = 1; // commands allowed per second
function handleCommand(obj, action) {
var user = obj.user, now = new Date().getTime();
var timeDifference = now - user.lastCommandTime;
user.commandCount = Math.max(user.commandCount - (timeDifference / 1000 * user.maxCommandsPerSecond), 0) + 1;
user.lastCommandTime = now;
if (user.commandCount <= user.maxCommandsPerSecond) {
console.log('command!');
} else {
console.log('flooding');
}
}
var obj = {user: user};
var e = 0;
function foo() {
handleCommand(obj, 'foo');
e += 250;
setTimeout(foo, 400 + e);
}
foo();
In this implementation, there's no need for a list or some global callback every X seconds, instead we just reduce the commandCount every time there's a new message, based on time difference to the last command, it's also possible to allow different command rates for specific users.
All we need are 3 new properties on the user object :)
Redis
I would use the insanely fast advanced key-value store redis to write something like this, because:
It is insanely fast.
There is no need for cronjob because you can set expire on keys.
It has atomic operations to increment key
You could use redis-cli for prototyping.
I myself really like node_redis as redis client. It is a really fast redis client, which can easily be installed using npm.
Algorithme
I think my algorithme would look something like this:
For each user create a unique key which counts the commands consecutively executed. Also set expire to the time when you don't flag a user as spammer anymore. Let's assume the spammer has nickname x and the expire 15.
Inside redis-cli
incr x
expire x 15
When you do a get x after 15 seconds then the key does not exist anymore.
If value of key is bigger then threshold then flag user as spammer.
get x
These answers seem to be going the wrong way about this.
IRC Servers will disconnect your client regardless of whether you're "debugging" or not if the client or bot is flooding a channel or the server in general.
Make a blanket flood control, using the method #nmichaels has detailed, but on the bot's network connection to the server itself.
I am trying to execute parallel functions on a list of objects using the new C# 4.0 Parallel.ForEach function. This is a very long maintenance process. I would like to make it execute in the order of the list so that I can stop and continue execution at the previous point. How do I do this?
Here is an example. I have a list of objects: a1 to a100. This is the current order:
a1, a51, a2, a52, a3, a53...
I want this order:
a1, a2, a3, a4...
I am OK with some objects being run out of order, but as long as I can find a point in the list where I can say that all objects before this point were run. I read the parallel programming csharp whitepaper and didn't see anything about it. There isn't a setting for this in the ParallelOptions class.
Do something like this:
int current = 0;
object lockCurrent = new object();
Parallel.For(0, list.Count,
new ParallelOptions { MaxDegreeOfParallelism = MaxThreads },
(ii, loopState) => {
// So the way Parallel.For works is that it chunks the task list up with each thread getting a chunk to work on...
// e.g. [1-1,000], [1,001- 2,000], [2,001-3,000] etc...
// We have prioritized our job queue such that more important tasks come first. So we don't want the task list to be
// broken up, we want the task list to be run in roughly the same order we started with. So we ignore tha past in
// loop variable and just increment our own counter.
int thisCurrent = 0;
lock (lockCurrent) {
thisCurrent = current;
current++;
}
dothework(list[thisCurrent]);
});
You can see how when you break out of the parallel for loop you will know the last list item to be executed, assuming you let all threads finish prior to breaking. I'm not a big fan of PLINQ or LINQ. I honestly don't see how writing LINQ/PLINQ leads to maintainable source code or readability.... Parallel.For is a much better solution.
If you use Parallel.Break to terminate the loop then you are guarenteed that all indices below the returned value will have been executed. This is about as close as you can get. The example here uses For but ForEach has similar overloads.
int n = ...
var result = new double[n];
var loopResult = Parallel.For(0, n, (i, loopState) =>
{
if (/* break condition is true */)
{
loopState.Break();
return;
}
result[i] = DoWork(i);
});
if (!loopResult.IsCompleted &&
loopResult.LowestBreakIteration.HasValue)
{
Console.WriteLine("Loop encountered a break at {0}",
loopResult.LowestBreakIteration.Value);
}
In a ForEach loop, an iteration index is generated internally for each element in each partition. Execution takes place out of order but after break you know that all the iterations lower than LowestBreakIteration will have been completed.
Taken from "Parallel Programming with Microsoft .NET" http://parallelpatterns.codeplex.com/
Available on MSDN. See http://msdn.microsoft.com/en-us/library/ff963552.aspx. The section "Breaking out of loops early" covers this scenario.
See also: http://msdn.microsoft.com/en-us/library/dd460721.aspx
For anyone else who comes across this question - if you're looping over an array or list (rather than an IEnumberable ), you can use the overload of Parallel.Foreach that gives the element index to maintain original order too.
string[] MyArray; // array of stuff to do parallel tasks on
string[] ProcessedArray = new string[MyArray.Length];
Parallel.ForEach(MyArray, (ArrayItem,loopstate,ArrayElementIndex) =>
{
string ProcessedArrayItem = TaskToDo(ArrayItem);
ProcessedArray[ArrayElementIndex] = ProcessedArrayItem;
});
As an alternate suggestion, you could record which object have been run and then filter the list when you resume exection to exclude the objects which have already run.
If this needs to be persistent across application restarts, you can store the ID's of the already executed objects (I assume here the objects have some unique identifier).
For anybody looking for a simple solution, I have posted 2 extension methods (one using PLINQ and one using Parallel.ForEach) as part of an answer to the following question:
Ordered PLINQ ForAll
Not sure if question was altered as my comment seems wrong.
Here improved, basically remind that parallel jobs run in out of your control order.
ea printing 10 numbers might result in 1,4,6,7,2,3,9,0.
If you like to stop your program and continue later.
Problems alike this usually endup in batching workloads.
And have some logging of what was done.
Say if you had to check 10.000 numbers for prime or so.
You could loop in batches of size 100, and have a prime log1, log2, log3
log1= 0..99
log2=100..199
Be sure to set some marker to know if a batch job was finished.
Its a general aprouch since the question isnt that exact either.
I want to process some data. I have about 25k items in a Dictionary. IN a foreach loop, I query a database to get results on that item. They're added as value to the Dictionary.
foreach (KeyValuePair<string, Type> pair in allPeople)
{
MySqlCommand comd = new MySqlCommand("SELECT * FROM `logs` WHERE IP = '" + pair.Key + "' GROUP BY src", con);
MySqlDataReader reader2 = comd.ExecuteReader();
Dictionary<string, Dictionary<int, Log>> allViews = new Dictionary<string, Dictionary<int, Log>>();
while (reader2.Read())
{
if (!allViews.ContainsKey(reader2.GetString("src")))
{
allViews.Add(reader2.GetString("src"), reader2.GetInt32("time"));
}
}
reader2.Close();
reader2.Dispose();
allPeople[pair.Key].View = allViews;
}
I was hoping to be able to do this faster by multi-threading. I have 8 threads available, and CPU usage is about 13%. I just don't know if it will work because it's relying on the MySQL server. On the other hand, maybe 8 threads would open 8 DB connections, and so be faster.
Anyway, if multi-threading would help in my case, how? o.O I've never worked with (multiple) threads, so any help would be great :D
MySqlDataReader is stateful - you call Read() on it and it moves to the next row, so each thread needs their own reader, and you need to concoct a query so they get different values. That might not be too hard, as you naturally have many queries with different values of pair.Key.
You also need to either have a temp dictionary per thread, and then merge them, or use a lock to prevent concurrent modification of the dictionary.
The above assumes that MySQL will allow a single connection to perform concurrent queries; otherwise you may need multiple connections too.
First though, I'd see what happens if you only ask the database for the data you need ("SELECT src,time FROMlogsWHERE IP = '" + pair.Key + "' GROUP BY src") and use GetString(0) and GetInt32(1) instead of using the names to look up the src and time; also only get the values once from the result.
I'm also not sure on the logic - you are not ordering the log events by time, so which one is the first returned (and so is stored in the dictionary) could be any of them.
Something like this logic - where each of N threads only operates on the Nth pair, each thread has its own reader, and nothing actually changes allPeople, only the properties of the values in allPeople:
private void RunSubQuery(Dictionary<string, Type> allPeople, MySqlConnection con, int threadNumber, int threadCount)
{
int hoppity = 0; // used to hop over the keys not processed by this thread
foreach (var pair in allPeople)
{
// each of the (threadCount) threads only processes the (threadCount)th key
if ((hoppity % threadCount) == threadNumber)
{
// you may need con per thread, or it might be that you can share con; I don't know
MySqlCommand comd = new MySqlCommand("SELECT src,time FROM `logs` WHERE IP = '" + pair.Key + "' GROUP BY src", con);
using (MySqlDataReader reader = comd.ExecuteReader())
{
var allViews = new Dictionary<string, Dictionary<int, Log>>();
while (reader.Read())
{
string src = reader.GetString(0);
int time = reader.GetInt32(1);
// do whatever to allViews with src and time
}
// no thread will be modifying the same pair.Value, so this is safe
pair.Value.View = allViews;
}
}
++hoppity;
}
}
This isn't tested - I don't have MySQL on this machine, nor do I have your database and the other types you're using. It's also rather procedural (kind of how you would do it in Fortran with OpenMPI) rather than wrapping everything up in task objects.
You could launch threads for this like so:
void RunQuery(Dictionary<string, Type> allPeople, MySqlConnection connection)
{
lock (allPeople)
{
const int threadCount = 8; // the number of threads
// if it takes 18 seconds currently and you're not at .net 4 yet, then you may as well create
// the threads here as any saving of using a pool will not matter against 18 seconds
//
// it could be more efficient to use a pool so that each thread takes a pair off of
// a queue, as doing it this way means that each thread has the same number of pairs to process,
// and some pairs might take longer than others
Thread[] threads = new Thread[threadCount];
for (int threadNumber = 0; threadNumber < threadCount; ++threadNumber)
{
threads[threadNumber] = new Thread(new ThreadStart(() => RunSubQuery(allPeople, connection, threadNumber, threadCount)));
threads[threadNumber].Start();
}
// wait for all threads to finish
for (int threadNumber = 0; threadNumber < threadCount; ++threadNumber)
{
threads[threadNumber].Join();
}
}
}
The extra lock held on allPeople is done so that there is a write barrier after all the threads return; I'm not quite sure if it's needed. Any object would do.
Nothing in this guarantees any performance gain - it might be that the MySQL libraries are single threaded, but the server certainly can handle multiple connections. Measure with various numbers of threads.
If you're using .net 4, then you don't have to mess around creating the threads or skipping the items you aren't working on:
// this time using .net 4 parallel; assumes that connection is thread safe
static void RunQuery(Dictionary<string, Type> allPeople, MySqlConnection connection)
{
Parallel.ForEach(allPeople, pair => RunPairQuery(pair, connection));
}
private static void RunPairQuery(KeyValuePair<string, Type> pair, MySqlConnection connection)
{
MySqlCommand comd = new MySqlCommand("SELECT src,time FROM `logs` WHERE IP = '" + pair.Key + "' GROUP BY src", connection);
using (MySqlDataReader reader = comd.ExecuteReader())
{
var allViews = new Dictionary<string, Dictionary<int, Log>>();
while (reader.Read())
{
string src = reader.GetString(0);
int time = reader.GetInt32(1);
// do whatever to allViews with src and time
}
// no iteration will be modifying the same pair.Value, so this is safe
pair.Value.View = allViews;
}
}
The biggest problem that comes to mind is that you are going to use multithreading to add values to a dictionary, which isn't thread safe.
You'll have to do something like this to make it work, and you might not get that much of a benefit from implementing it this was as it still has to lock the dictionary object to add a value.
Assumptions:
There is a table People in your
database
There are alot of people in
your database
Each database query adds overhead you are doing one db query for each of the people in your database I would suggest it was faster to get all the data back in one query then to make repeated calles
select l.ip,l.time,l.src
from logs l, people p
where l.ip = p.ip
group by l.ip, l.src
Try this with a loop in a single thread, I belive this will be much faster then your existing code.
With in your existing code another thing you can do is to take the creation of the MySqlCommand out of the loop, prepare it in advance and just change the parameter. This should speed up execution of the SQL. see http://dev.mysql.com/doc/refman/5.0/es/connector-net-examples-mysqlcommand.html#connector-net-examples-mysqlcommand-prepare
MySqlCommand comd = new MySqlCommand("SELECT * FROM `logs` WHERE IP = ?key GROUP BY src", con);
comd.prepare();
comd.Parameters.Add("?key","example");
foreach (KeyValuePair<string, Type> pair in allPeople)
{
comd.Parameters[0].Value = pair.Key;
If you are using mutiple threads, each thread will still need there own Command, at lest in MS-SQL this would still be faster even if you recreated and prepared the statment every time, due to the ability for the SQL server to be able to cache the execution plan of a paramertirised statment.
Before you do anything else, find out exactly where the time is being spent. Check the execution plan of the query. The first thing I'd suspect is a missing index on logs.IP.
18 minutes for something like this seems much too long to me. Even if you can cut the execution time in eight by adding more threads (which is unlikely!) you still end up using more than 2 minutes. You could probably read the whole 25k rows into memory in less than five seconds and do the necessary processing in memory...
EDIT: Just to clarify, I'm not advocating actually doing this in memory, just saying that it looks like there's a bigger bottleneck here that can be removed.
I think if you are running this on a multi core machine you could gain benefits from multi threading.
However the way I would approach it is to first look at unblocking the thread you are currently using by making asynchronous database calls. The call backs will execute on background threads, so you will get some multi core benefit there and you won't be blocking threads waiting for the db to come back.
For IO intensive apps like this example sounds like you are likely to see improved throughput depending on what load the db can handle. Assuming the db scales to handle more than one concurrent request you should be good.
Thanks everyone for your help. Currently I am using this
for (int i = 0; i < 8; i++)
{
ThreadPool.QueueUserWorkItem(addDistinctScres, i);
}
ThreadPool to run all the threads. I use the method provided by Pete Kirkham, and I'm creating a new connection per thread.
Times went down to 4 minutes.
Next I'll make something wait for the callback of the threadpool? before performing other functions.
I think the bottleneck now is the MySQL server, because the CPU usage has drops.
#odd parity I thought about that, but the real thing is waaay more than 25k rows. Idk if that'd work.
This sound like the perfect job for map/reduce, i am not a .Net-programmer, but this seems like a reasonable guide:
http://ox.no/posts/minimalistic-mapreduce-in-net-4-0-with-the-new-task-parallel-library-tpl