I know, many many similar questions asked many many times (many is two times). But I can't figure out how can I do this in my case. It does not take any effect and I don't know why.
code:
default_path = os.path.dirname(os.path.abspath(__file__))
start_urls = []
if os.path.exists(f'{default_path}/amazon_permalink_error.csv'):
df = pd.read_csv(f'{default_path}/amazon_permalink_error.csv')
if len(df) > 0:
all_completedISBN = pd.read_csv(f'{default_path}/amazon_permalink.csv')['ISBN'].to_list()
for i in range(len(df)):
if df.iloc[i]['sku'].split('/')[-1] not in all_completedISBN:
start_urls.append(df.iloc[i]['sku'])
else:
df.drop(i)
else:
os.remove(f'{default_path}/amazon_permalink_error.csv')
amazon_permalink_error.csv:
sku
https://www.amazon.com/dp/B085K647FM
https://www.amazon.com/dp/B07MTMCNLX
https://www.amazon.com/dp/B07WSK5W7V
https://www.amazon.com/dp/B089T73ZB9
amazon_permalink.csv
ISBN,PERMALINK,Main Link,Brand,Price
B085K647FM,Razer-Raptor-Gaming-Monitor-Compatible,https://www.amazon.com/Razer-Raptor-Gaming-Monitor-Compatible/dp/B085K647FM,Razer,$619.95
B085K647FM,Razer-Raptor-Gaming-Monitor-Compatible,https://www.amazon.com/Razer-Raptor-Gaming-Monitor-Compatible/dp/B085K647FM,Razer,$619.95
B0959Y663R,Razer-Raptor-Gaming-Monitor-Compatible,https://www.amazon.com/Razer-Raptor-Gaming-Monitor-Compatible/dp/B0959Y663R,Razer,$797.49
B087N4LQPN,ALIENWARE-AW2521HF-24-5-Gaming-Monitor,https://www.amazon.com/ALIENWARE-AW2521HF-24-5-Gaming-Monitor/dp/B087N4LQPN,Alienware,
When I print:
print(len(start_urls)) it shows me 943 and total length of error file is 1134, so it means it is working but when I'm dropping which is in and print at last print(len(df)) it shows 1133 but it should show 943.
You are dropping the row from pandas using the drop method but not updating the variable's data. Use inplace=True for the drop method to solve your query
df.drop(i, inplace=True)
Related
I'have a Dataframe, that correspond to lat/long of an object in movement.
This object go from one place to another, and I created a column that reference what place he is at every second.
I want to split that dataframe, so when the object go in one place, the leave to another, I'll have two separate dataframe.
'None' mean he is between places
My actual code :
def cut_df2(df):
df_copy = df.copy()
#check if change of place
df_copy['changed'] = df_copy['place'].ne(df_copy['place'].shift().bfill()).astype(int)
last = 0
dfs= []
for num, line in df_copy.iterrows():
if line.changed:
dfs.append(df.iloc[last:num,:])
last = num
# Check if last line was in a place
if line.place != 'None':
dfs.append(df.iloc[last:,:])
df_outs= []
# Delete empty dataframes
for num, dataframe in enumerate(dfs):
if not dataframe.empty :
if dataframe.reset_index().place.iloc[0] != 'None':
df_outs.append(dataframe)
return df_outs
It won't work on big dataset, but work on simple examples and I've no idea why, anyone can help me?
Try using this instead:
https://www.geeksforgeeks.org/split-pandas-dataframe-by-rows/
iloc can be a good way to split a dataframe
df1 = datasX.iloc[:, :72]
df2 = datasX.iloc[:, 72:]
What I want to do was actually group by all similar strings in one columns and sum their
corresponding counts if there are similarity, otherwise, leave them.
A little similar to this post. Unfortunately I have not been able to apply this to my case:
How to group Pandas data frame by column with regex match
Unfortunately, I ended up with the following steps:
I wrote a function to print out all the fuzz.Wratio for each row of string,
when each row does a linear search from the top to check if there are other similar
strings in the rest of the rows. If the WRatio > 90, I would like to sum these row's
corresponding counts. Otherwise, leave them there.
I created a test data looking like this:
test_data=pd.DataFrame({
'name':['Apple.Inc.','apple.inc','APPLE.INC','OMEGA'],
'count':[4,3,2,6]
})
So what I want to do is make the result as a dataframe like:
result=pd.Dataframe({
'Nname':['Apple.Inc.','OMEGA'],
'Ncount':[9,6]
})
My function so far only gave me the fuzz ratio for each row,
and to my understanding is that,
each row compares to itself three times( here we have four rows).
So My function output would look like:
pd.Dataframe({
'Nname':['Apple.Inc.','Apple.Inc.','Apple.Inc.','apple.inc',\
'apple.inc','apple.inc'],
'Ncount':[4,4,4,3,3,3],
'FRatio': [100,100,100,100,100,100] })
This is just one portion of the whole output from the function I wrote with this test data.
And the last row "OMEGA" would give me a fuzz ratio about 18.
My function is like this:
def checkDupTitle2(data):
Nname=[]
Ncount=[]
f_ratio=[]
for i in range(0, len(data)):
current=0
count=0
space=0
for space in range(0, len(data)-1-current):
ratio=fuzz.WRatio(str(data.loc[i]['name']).strip(), \
str(data.loc[current+space]['name']).strip())
Nname.append(str(data.loc[i]['name']).strip())
Ncount.append(str(data.loc[i]['count']).strip())
f_ratio.append(ratio)
df=pd.DataFrame({
'Nname': Nname,
'Ncount': Ncount,
'FRatio': f_ratio
})
return df
So after running this function and get the output,
I tried to get what I eventually want.
here I tried group by on the df created above:
output.groupby(output.FRatio>90).sum()
But this way, I still need a "name" in my dataframe,
how can I decide on which names for this total counts, say, 9 here.
"Apple.Inc" or "apple.inc" or "APPLE.INC"?
Or, did I make it too complex?
Is there a way to group by "name" at the very first and treat "Apple.Inc.", "apple.inc" and "APPLE.INC" all the same, then my problem has solved. I have stump quite a while. Any helps would be highly
appreciated! Thanks!
The following code is using my library RapidFuzz instead of FuzzyWuzzy since it is faster and it has a process method extractIndices which does help here. This solution is quite a bit faster, but since I do not work with pandas regulary I am sure there are still some things that could be improved :)
import pandas as pd
from rapidfuzz import process, utils
def checkDupTitle(data):
values = data.values.tolist()
companies = [company for company, _ in values]
pcompanies = [utils.default_process(company) for company in companies]
counts = [count for _, count in values]
results = []
while companies:
company = companies.pop(0)
pcompany = pcompanies.pop(0)
count = counts.pop(0)
duplicates = process.extractIndices(
pcompany, pcompanies,
processor=None, score_cutoff=90, limit=None)
for (i, _) in sorted(duplicates, reverse=True):
count += counts.pop(i)
del pcompanies[i]
del companies[i]
results.append([company, count])
return pd.DataFrame(results, columns=['Nname','Ncount'])
test_data=pd.DataFrame({
'name':['Apple.Inc.','apple.inc','APPLE.INC','OMEGA'],
'count':[4,3,2,6]
})
checkDupTitle(test_data)
The result is
pd.Dataframe({
'Nname':['Apple.Inc.','OMEGA'],
'Ncount':[9,6]
})
(I've edited the first column name in the labels_df for clarity)
I have two DataFrames, train_df and labels_df. train_df has integers that map to attribute names in the labels_df. I would like to look up each number within a given train_df cell and return in the adjacent cell, the corresponding attribute name from the labels_df.
So fore example, the first observation in train_df has attribute_ids of 147, 616 and 813 which map to (in the labels_df) culture::french, tag::dogs, tag::men. And I would like to place those strings inside one cell on the same row as the corresponding integers.
I've tried variations of the function below but fear I am wayyy off:
def my_mapping(df1, df2):
tags = df1['attribute_ids']
for i in tags.iteritems():
df1['new_col'] = df2.iloc[i]
return df1
The data are originally from two csv files:
train.csv
labels.csv
I tried this from #Danny :
sample_train_df['attribute_ids'].apply(lambda x: [sample_labels_df[sample_labels_df['attribute_name'] == i]
['attribute_id_num'] for i in x])
*please note - I am running the above code on samples of each DF due to run times on the original DFs.
which returned:
I hope this is what you are looking for. i am sure there's a much more efficient way using look up.
df['new_col'] = df['attribute_ids'].apply(lambda x: [labels_df[labels_df['attribute_id'] == i]['attribute_name'] for i in x])
This is super ugly and one day, hopefully sooner than later, i'll be able to accomplish this task in an elegant fashion though, until then, this is what got me the result I need.
split train_df['attribute_ids'] into their own cell/column
helper_df = train_df['attribute_ids'].str.split(expand=True)
combine train_df with the helper_df so I have the id column (they are photo id's)
train_df2 = pd.concat([train_df, helper_df], axis=1)
drop the original attribute_ids column
train_df2.drop(columns = 'attribute_ids', inplace=True)
rename the new columns
train_df2.rename(columns = {0:'attr1', 1:'attr2', 2:'attr3', 3:'attr4', 4:'attr5', 5:'attr6',
6:'attr7', 7:'attr8', 8:'attr9', 9:'attr10', 10:'attr11'})
convert the labels_df into a dictionary
def create_file_mapping(df):
mapping = dict()
for i in range(len(df)):
name, tags = df['attribute_id_num'][i], df['attribute_name'][i]
mapping[str(name)] = tags
return mapping
map and replace the tag numbers with their corresponding tag names
train_df3 = train_df2.applymap(lambda s: my_map.get(s) if s in my_map else s)
create a new column of the observations tags in a list of concatenated values
helper1['new_col'] = helper1[helper1.columns[0:10]].apply(lambda x: ','.join(x.astype(str)), axis = 1)
I have some data 33k rows x 57 columns.
In some columns there is a data which I want to translate with dictionary.
I have done translation, but now I want to write back translated data to my data set.
I have problem with saving tuples output from for loop.
I am using tuples for creating good translation. .join and .append is not working in my case. I was trying in many case but without any success.
Looking for any advice.
data = pd.read_csv(filepath, engine="python", sep=";", keep_default_na=False)
for index, row in data.iterrows():
row["translated"] = (tuple(slownik.get(znak) for znak in row["1st_service"]))
I just want to see in print(data["1st_service"] a translated data not the previous one before for loop.
First of all, if your csv doesn't already have a 'translated' column, you'll have to add it:
import numpy as np
data['translated'] = np.nan
The problem is the row object you're trying to write to is only a view of the dataframe, it's not the dataframe itself. Plus you're missing square brackets for your list comprehension, if I'm understanding what you're doing. So change your last line to:
data.loc[index, "translated"] = tuple([slownik.get(znak) for znak in row["1st_service"]])
and you'll get a tuple written into that one cell.
In future, posting the exact error message you're getting is very helpful!
I have manage it, below working code:
data = pd.read_csv(filepath, engine="python", sep=";", keep_default_na=False)
data.columns = []
slownik = dict([ ])
trans = ' '
for index, row in data.iterrows():
trans += str(tuple([slownik.get(znak) for znak in row["1st_service"]]))
data['1st_service'] = trans.split(')(')
data.to_csv("out.csv", index=False)
Can you tell me if it is well done?
Maybe there is an faster way to do it?
I am doing it for 12 columns in one for loop, as shown up.
Some background: My code takes user input and applies it to my DF to remove certain rows. This process repeats as many times as the user would like. Unfortunately, I am not sure how to update my DF within the while loop I have created so that it keeps the changes being made:
data = ({'hello':['the man','is a','good guy']})
df = pd.DataFrame(data)
def func():
while True:
n = input('Words: ')
if n == "Done":
break
elif n != "Done":
pattern = '^'+''.join('(?=.*{})'.format(word) for word in n.split())
df[df['hello'].str.contains(pattern)==False]
How do I update the DF at the end of each loop so the changes being made stay put?
Ok, I reevaluated your problem and my old answer was totally wrong of course.
What you want is the DataFrame.drop method. This can be done inplace.
mask = df['hello'].str.contains(pattern)
df.drop(mask, inplace=True)
This will update your DataFrame.
Looks to me like you've already done all the hard work, but there are two problems.
Your last line doesn't store the result anywhere. Most Pandas operations are not "in-place", which means you have to store the result somewhere to be able to use it later.
df is a global variable, and setting its value inside a function doesn't work, unless you explicitly have a line stating global df. See the good answers to this question for more detail.
So I think you just need to do:
df = df[df['hello'].str.contains(pattern)==False]
to fix problem one.
For problem two, at the end of func, do return df then when you call func call it like:
df = func(df)
OR, start func with the line
global df