I was following a bevy tutorial and I thought:
What if I run the executable? After all, I will want to share my games in the future.
When i ran the executable, it said that cannot find 2 dlls, bevy_dylib-5d51f44a630848aa.dll and std-1cd530251ef8500f.dll.
It is interesting because has a file called bevy_dylib.dll in the folder and should searching this.
But I found bevy_dylib-5d51f44a630848aa.dll inside the deps, while std-1cd530251ef8500f.dll seems just don't exist.
Same thing happens with this code:
use bevy::prelude::*;
fn main() {
App::new().add_system(hello).run();
}
fn hello() {
println!("Hello");
}
but it doesn't happend when I use cargo run.
Other times I've noticed that apparently has some difference between using cargo run and running the executable.
Anyone know how compile correctly a game made with bevy? What I am doing wrong?
First, there is a big difference between development and release. Your development configuration should be focused on low build times, and your release configuration should be focused on portability.
Bevy recommends using the "dynamic" feature for low build times. If you want to compile for release, though, you should remove that flag. This is most likely where most of your problems come from.
Another problem that arises is that by default, Rust on Windows depends on the MSVC Runtime. You might want to enable static runtime linking to compile the runtime into the executable. This increases its size a little, but that should be fine.
The best way to enable static runtime linking on windows is to create the file .cargo/config.toml in your project directory, and then paste into it:
[target.x86_64-pc-windows-msvc]
rustflags = ["-Ctarget-feature=+crt-static"]
So to sum up:
Remove the "dynamic" flag from bevy
Build with the crt-static flag
Then, you should be able to copy-paste your binary to arbitrary windows systems.
Note, however, that further dependencies of your project could introduce new runtime dependencies. You might have to deliver the respective .dll files with your executable, then; this is common practice for games.
Further remarks
You can check for runtime dependencies with the ldd tool in git-bash.
Using it on my executable without +crt-static shows:
> ldd target/release/<my cratename>.exe
ntdll.dll => /c/WINDOWS/SYSTEM32/ntdll.dll (0x7ffc8c410000)
KERNEL32.DLL => /c/WINDOWS/System32/KERNEL32.DLL (0x7ffc8afc0000)
KERNELBASE.dll => /c/WINDOWS/System32/KERNELBASE.dll (0x7ffc89d80000)
bcrypt.dll => /c/WINDOWS/System32/bcrypt.dll (0x7ffc89d00000)
ucrtbase.dll => /c/WINDOWS/System32/ucrtbase.dll (0x7ffc8a370000)
VCRUNTIME140.dll => /c/WINDOWS/SYSTEM32/VCRUNTIME140.dll (0x7ffc6cba0000)
After linking with +crt-static, it shows:
> ldd target/release/<my cratename>.exe
ntdll.dll => /c/WINDOWS/SYSTEM32/ntdll.dll (0x7ffc8c410000)
KERNEL32.DLL => /c/WINDOWS/System32/KERNEL32.DLL (0x7ffc8afc0000)
KERNELBASE.dll => /c/WINDOWS/System32/KERNELBASE.dll (0x7ffc89d80000)
bcrypt.dll => /c/WINDOWS/System32/bcrypt.dll (0x7ffc89d00000)
Related
I am trying to create a library in rust to be used with rust executables. In C you can just create your .a or .so (or .lib or .dll on windows) and use tools like CMake to link everything, however rust does not seem to have this kind of infrastructure?
It is possible to make an executable with cargo (cargo new ) and create a library by adding the --lib flag (cargo new --lib), but then how would you use the resulting .rlib file (from the library cargo project)? I managed to link the .rlib file as follows:
rustc main.rs --extern foo=libfoo.rlib
and that works beautifully, though, I am not interested in writing a thousand rustc commands to build the final executable (which depends on the .rlib) if there is cargo that can do that for you. I tried working with a build script (which works perfectly for any C library, static or dynamic), but if I try it with the .rlib file, cargo says that it cannot find "foo" (-lfoo), the build script:
fn main() {
println!("cargo:rustc-link-search=.");
println!("cargo:rustc-link-lib=foo");
}
I tried replacing the path (search) to different directories (whilst also moving the .rlib file to the correct directory), also tried different combinations of libfoo, libfoo.rlib, ... (note that for the C libaries, foo is sufficient).
So my question really is: How can you create a rust library for private use, and how do you use it with a rust executable in a proper way, avoiding manual rustc commands? Are there tools that do this? Am I missing something in the build script? Perhaps there exists something like CMake for rust?
I suppose it is possible to just create a C interface over the rust code and compile another C project as that does work with cargo.
I do NOT want to publish the code to crates.io as I want this library strictly for private use.
Cargo does not support using pre-compiled .rlibs. Cargo is designed to compile programs fully from source (not counting native libraries).
How can you create a rust library for private use … I do NOT want to publish the code to crates.io as I want this library strictly for private use.
To use a private library, you write a dependency using a path or git dependency (or use a private package registry, but that's more work to set up).
[dependencies]
my-lib-a = { path = "../my-lib-a/" }
my-lib-b = { git = "https://my-git-host.example/my-lib-b", branch = "stable" }
Your private library is now compiled exactly like a “public” one.
I am attempting to write a Rust wrapper for screen_capture_lite, my code for which is located here. I've gotten the cmake crate compiling screen_capture_lite from source, but I get 'unresolved external symbol' linker errors when trying to run my window_count example script. These errors appear to be for Windows API symbols or C++ standard library symbols. Here is a pastebin with the errors.
From what I've figured out about linking, I assume this is because I'm trying to statically link to screen_capture_lite, which gets rid of screen_capture_lite's dynamic dependencies. This seems true, because when I link to all of the system libraries manually, my window_count example script works and correctly reports the number of open windows. This is what my build script looks like when I do that:
extern crate cmake;
use cmake::Config;
fn main() {
let dest = Config::new(".").profile("Release").build();
println!("cargo:rustc-link-search={}", dest.join("lib").display());
println!("cargo:rustc-link-lib=static=screen_capture_lite");
println!("cargo:rustc-link-lib=kernel32");
println!("cargo:rustc-link-lib=user32");
println!("cargo:rustc-link-lib=gdi32");
println!("cargo:rustc-link-lib=winspool");
println!("cargo:rustc-link-lib=shell32");
println!("cargo:rustc-link-lib=ole32");
println!("cargo:rustc-link-lib=oleaut32");
println!("cargo:rustc-link-lib=uuid");
println!("cargo:rustc-link-lib=comdlg32");
println!("cargo:rustc-link-lib=advapi32");
println!("cargo:rustc-link-lib=dwmapi");
}
Manually linking the system libraries doesn't seem like a good solution to me, so is there a way to export a list of paths from cmake to a file for my build script to consume?
Basically I am trying to cargo build a crate which has a build.rs file.
This crate is located inside a bigger project and it's supposed to be a lib crate.
And inside this build.rs file, I am trying to compile a .C file which includes a couple of headers.
Fun fact: I got this build.rs file and crate structure from another little demo crate, and in that demo crate I had no problem to compile this exact C file with these headers.
FULL ERROR HERE:
Here is a link to github: https://github.com/mihaidogaru2537/FirecrackerPlayground/tree/dpdk_component/firecracker/src/dpdk_component
There is the crate I am talking about and you can also see the bigger project in which it resides. In the README file you can see the full error.
Either I do cargo build from the root of the big project or from the root of this problematic crate, the error is the same.
"cargo:warning=/usr/include/asm-generic/errno.h:5:10: fatal error: asm-generic/errno-base.h: No such file or directory
cargo:warning= 5 | #include <asm-generic/errno-base.h>"
The missing file might change depending on the .flag("-I/path/..") calls I am doing inside the build.rs
As you can see, right now it's unable to find errno-base.h, but I am including the path to asm-generic.
Here is the code of the build.rs file from the crate where the compilation of this C file works, as you can see, I did not have to add any include flags before calling compile.
fn main() {
// Tell cargo to tell rustc to link the system bzip2
// shared library.
// println!("cargo:rustc-link-lib=rte_ring");
// println!("cargo:rustc-link-lib=rte_mempool");
// Tell cargo to invalidate the built crate whenever the wrapper changes
// println!("cargo:rerun-if-changed=wrapper.h");
let _src = ["src/static-functions.c"];
println!("cargo:rerun-if-changed=build.rs");
let mut builder = cc::Build::new();
let build = builder
.file("src/static-functions.c")
.flag("-Wno-unused-parameter");
build.compile("foo");
}
Additional info:
The problematic crate is pretty small, see the link above. There is the build.rs file, C file and header file is inside the include directory.
One thing that I suspect, is that the target of the bigger project:
TARGET = Some("x86_64-unknown-linux-musl")
might affect the way the C file is compiled.
In the project where the compilation is working, I am not using that linux-musl stuff.
I am a total noob when it comes to Rust, but I do have a decent understanding of how C/C++ works.
I am running the project on Ubuntu 20.04
Those missing headers are a result of importing DPDK headers, I have DPDK libraries installed on the machine in question.
Let me know if you have any questions, sorry for the long read and thank you.
I somehow managed to fix it by adjusting the cargo build command to use x86_64-unknown-linux-gnu as target instead of x86_64-unknown-linux-musl (By default cargo build was doing the musl target somehow)
So if you are trying to build a rust app which is using DPDK libraries and you are getting missing headers, make sure to try the following:
cargo build --target=x86_64-unknown-linux-gnu
Well if you have to use musl and there is no alternative, I don't have an answer. But to me this was enough.
If someone has an explanation why musl is not working in this scenario, please let us know.
Reddit Rust community helped me as well, check this link out if you are interested:
https://www.reddit.com/r/rust/comments/mo3i08/unable_to_compile_c_file_inside_buildrs_headers/
So Why build.rs was unable to find .C headers?
ANSWER
Because I was using x86_64-unknown-linux-musl as target.
I have a Haskell library that I am developing using Stack. As I am developing the library, I like to write small test/experimentation programs that use the library. I keep a collection of these test programs for myself in a directory locally. These test modules are very quick and informal, and not appropriate to include as unit tests in the committed library code. Typically, most of them aren't even maintained and won't compile against the latest version of the library, but I keep them around in case I want to update them later. When I'm working on a test program, I want it to build against my working copy of the library, with any changes that I've made to the library locally.
How should I set up my Stack build environment for this situation? Here are some options I've tried, and the problems with each options.
Two Cabal packages, one Stack configuration. The stack.yaml file lists both packages and defines the build environment for both at once.
Problem: The stack.yaml file needs to be included as part of the committed library source code, so that other developers can build the library from source reproducibly. I don't want the public stack.yaml file for my library to include build information for my local test projects.
Problem: As far as I know, to make this work I need to have a .cabal file that lists all the executables and modules for my test programs. This is annoying to update whenever I want to throw together a quick experimental script, and will fail to build any of the test programs if I have even a single module that doesn't compile. I can't have a .cabal file with no sections, because Cabal gives "No executables, libraries,tests, or benchmarks found. Nothing to do.", and because this offers nowhere to list build-depends.
Create a Cabal sandbox for the test programs. Use cabal sandbox add-source to add the local library as a package. See also this answer.
Problem: Using Cabal sandboxes instead of Stack reintroduces a lot of the dependency problems that Stack is supposed to fix, such as using the system-global GHC instead of the GHC defined by the resolver.
Have a separate stack.yaml for the test programs. Add the library under packages as location: 'C:\Path\To\Local\Library' and set extra-dep: true for that dependency. (See here for more info on this feature.) Don't put any other Cabal packages under packages in the stack.yaml for the test programs. Use stack runghc to invoke test programs within the scope of their stack.yaml.
Problem: I just can't get this one to work. Running stack build inside the test program directory gives "Error parsing targets: The project contains no local packages (packages not marked with 'extra-dep')". Running stack runghc acts as if no dependencies are present at all. I don't want to add a Cabal package for the test programs because this has the same problem as option 1 with needing to construct an explicit .cabal file describing the modules to build.
Problem: Stack build configuration info that I want to be identical between the library and the test programs has to be copied manually. For example, if I change the resolver in my library's stack.yaml, I also need to change it in the stack.yaml for my test programs separately.
Have a directory inside my working copy of the library that contains all of my test programs. Use stack runghc to invoke test programs in the context of the library.
Problem: I'd like the directory with my test programs to be outside of the directory containing my library source code and build configuration, so that I don't have to tell the version control for my library to ignore my test code, and can have my own local version control just for the test programs.
Problem: Only works with a single local library dependency. If my test programs need to depend on local working copies of two different libraries with their own stack.yaml files, I'm out of luck.
Add a symbolic link inside my working copy of the library to a separate directory that contains all of my test programs. Navigate through the symlink and use stack runghc to invoke test programs in the context of the library.
Problem: Super awkward to use, especially since I'm on Windows and Windows has terrible symlink support.
Problem: Still need to tell my version control system to ignore the symlink.
Problem: Still only works with a single library dependency.
If only one local library is involved, I use option 4. You can put your tests outside the directory of your library, and either invoke stack from the directory of your library, or using --stack-yaml path/to/library/stack.yaml.
Otherwise, I use option 3, creating a separate stack project without setting extra-dep.
...
packages:
- 'path/to/package1'
- 'path/to/package2'
...
I can't think of a good workaround for the issue of configuration duplication. There would otherwise be conflicts if multiple packages specified different resolvers/package versions.
Edit: Actually a stub library works better, so edited to add.
I think the way to get #3 to work is -- under your scratch program directory -- (1) add . under packages in stack.yaml alongside the location/extra-dep: true package:
packages:
- '.'
- location: ../mylib
extra-dep: true
(2) create an executable clause in scratch.cabal that points to a stub main program (i.e., a "Hello World" program that compiles but need not do anything) which depends on your library:
executable main
hs-source-dirs: src
main-is: Stub.hs
build-depends: base
, mylib
default-language: Haskell2010
or a library clause with no exposed modules, again that depends on your mylib library:
library
hs-source-dirs: src
build-depends: base >= 4.7 && < 5
, mylib
default-language: Haskell2010
and (3) run stack build in the scratch directory. This should build and register mylib, and now stack runghc Prog1.hs should work fine for running programs that depend on mylib modules.
If you use the executable approach, the stub program is compiled as a side effect but otherwise ignored. If you use the library approach, it looks like the stub library isn't even built; and you then have the option of actually building a scratch library by adding some exposed modules of shared code for your test programs to use, if it's convenient, so the stub library might be best.
None of this solves the problem of keeping stack.yaml info like the resolver version in sync, but it seems to address all the problems you list in 1, 2, 4, and 5. In particular, it should work fine for test programs that depend on multiple local libraries you're developing.
So I am trying to build and test out a CMake with the Android NDK on Android Studio. I can get my library to compile, but it doesn't seem to want to pull any third-party dependencies over. I've been reading through the toolchain and looking for better documentations, with no luck. Can someone tell me if I am missing?
cmake_minimum_required(VERSION 3.4.1)
set(SFML_PATH ${ANDROID_NDK}/sources/sfml)
set(SFML_LIB_PATH ${SFML_PATH}/lib/${ANDROID_NDK_ABI_NAME})
set(SFML_LIB_SYSTEM ${SFML_LIB_PATH}/libsfml-system.so)
set(SFML_LIB_AUDIO ${SFML_LIB_PATH}/libsfml-audio.so)
set(SFML_LIB_GRAPHICS ${SFML_LIB_PATH}/libsfml-graphics.so)
set(SFML_LIB_NETWORK ${SFML_LIB_PATH}/libsfml-network.so)
set(SFML_LIB_WINDOW ${SFML_LIB_PATH}/libsfml-window.so)
set(SFML_LIB_ACTIVITY ${SFML_LIB_PATH}/libsfml-activity.so)
set(SFML_LIB_MAIN ${SFML_LIB_PATH}/libsfml-main.a)
set(SFML_LIBS ${SFML_LIB_SYSTEM} ${SFML_LIB_GRAPHICS} ${SFML_LIB_AUDIO} ${SFML_LIB_WINDOW} ${SFML_LIB_ACTIVITY})
include_directories(${SFML_PATH}/include)
link_directories(${SFML_LIB_PATH})
add_library(native-lib SHARED
src/main/cpp/native-lib.cpp)
target_link_libraries(native-lib log ${SFML_LIBS})
#file(COPY ${SFML_LIBS} DESTINATION ${__android_install_path})
FOREACH(SFML_LIB ${SFML_LIB})
execute_process( COMMAND "${CMAKE_COMMAND}" -E copy_if_different "${SFML_LIB}" "${LIBRARY_OUTPUT_PATH}/${SFML_LIB}" RESULT_VARIABLE __fileCopyProcess )
MESSAGE("Lib: ${SFML_LIB}")
ENDFOREACH(SFML_LIB)
Above is my CMakeLists.txt. I have done a little hacking to get it to compile with SFML with the paths, as I have not found good documentation with CMake and Android yet.
May you add more info for:
"but it doesn't seem to want to pull any third-party dependencies over."?
this one:
https://github.com/googlesamples/android-ndk/tree/master/hello-libs
has static and shared 3rd party libs, you may try it.
For the shared dependent lib, you will need to pack them into APK, that is done inside gradle, cmake will not do it.
The above example shows that, basically they need to be copied into your app/src/main/jniLibs too so they will be packed into apk, and pushed to your android phone/tablet. At runtime they could be loaded.
I have tried to put a group of libraries into one directory, and use
link_directories(...)
then just put the lib names directly into
target_link_libraries(...)
also works. Make sure you have the right libs for the ABIs you intend to support for your app [looks like you are just building for one ABI].
The process could be little long it will depend on your android skills.
An example could be similar to this process:
Crosscompile sfml.
Create your jni bridge
Generate with cmake the project and compile
Copy your files to android studio. create java loading library code.
I guess that you have crosscompiled sfml and you know how works crosscompiling process, if I am wrong check these link below:
Tutorial:
https://github.com/SFML/SFML/wiki/Tutorial:-Building-SFML-for-Android
Source code:
https://github.com/SFML/SFML
Toolchain:
https://github.com/SFML/SFML/blob/master/cmake/toolchains/android.toolchain.cmake
Changes on your cmake:
add this file
FIND_PACKAGE(SFML required)
In cmake put your SFML build directory and cmake will fills your VARIABLES
automatically for instance this variables:
set(SFML_PATH ${ANDROID_NDK}/sources/sfml)
set(SFML_LIB_PATH ${SFML_PATH}/lib/${ANDROID_NDK_ABI_NAME})
set(SFML_LIB_SYSTEM ${SFML_LIB_PATH}/libsfml-system.so)
set(SFML_LIB_AUDIO ${SFML_LIB_PATH}/libsfml-audio.so)
set(SFML_LIB_GRAPHICS ${SFML_LIB_PATH}/libsfml-graphics.so)
set(SFML_LIB_NETWORK ${SFML_LIB_PATH}/libsfml-network.so)
set(SFML_LIB_WINDOW ${SFML_LIB_PATH}/libsfml-window.so)
set(SFML_LIB_ACTIVITY ${SFML_LIB_PATH}/libsfml-activity.so)
set(SFML_LIB_MAIN ${SFML_LIB_PATH}/libsfml-main.a)
There are two ways to make android studio native apps:
Easy way:
Create JNI bridge:
Crosscompile your cmake script and copy your lib to app/src/main/jniLibs
add library in execution time
code:
try
{
Log.v(LOG_TAG, "adding your library");
System.loadLibrary(your_library);
}
catch(UnsatisfiedLinkError e)
{
Log.e(LOG_TAG,e.getMessage());
}
More complete way (it allows to debug library)
Create your ndk module in gradle
example
android.ndk {
moduleName = "your_library"
cppFlags.add("-fexceptions")
//cppFlags.add("-std=c++11")
//cFlags.add("-fopenmp")
cppFlags.add("-I" + file("src/main/jni").absolutePath)
stl = "gnustl_shared" // Which STL library to use: gnustl or stlport
ldLibs.addAll(["android", "EGL", "GLESv2", "dl", "log", "z"])
String libsDir = curDir.absolutePath + "/src/main/jniLibs/armeabi/"
ldLibs.add(libsDir + "your_native_lib.so")
}