How can I securely sign transactions from my code? (Algorand) - security

I'm writing smart contracts on Algorand, and want to know how to make them production-ready. How can I securely pass private key, for example when creating smart a contract and sending it to chain? It feels insecure to store the passphrase or private key to the dev computer.

Key management is an extremely complex topic and if you are writing an application that is expecting to move millions of Algos, I would strongly recommend consulting a security expert and do a full audit.
There are many questions to ask and I'm just highlighting a few there:
Do you want a custodial solution (i.e. the service has the key) or a non-custodial one (i.e. the user has the key - drawback: if the user is less technical, they may lose their keys with no recovery solution) or a hybrid one?
What does the key allow to do?
Q1: Custodial / non-custodial solution?
a. If you want a non-custodial solution, use MyAlgo Connect, AlgoSigner, and/or Wallet Connect. This is easy and really limit risks on your side, but non-technical users may lose keys.
b. A custodial solution is much more complex as you hold funds. Beyond technical issues, there are also legal issues.
c. Hybrid solutions may use multisig or smart contract to allow the user to use their non-custodial keys most of the time, but have a complete cold storage key that is used to manually recover accounts in case things go wrong. Complete cold storage means slow to access but also more secure.
Note that you can also have custodial key management by default and allow for non-custodial key management for advanced users.
Q2: What does the key allow?
There are many times where you actually don't need the stored key to do everything possible.
For example, if you are just transferring ASA, you may use delegated logicsigs. See the forum.
However, if you really need a custodial solution done with storing your key, you most likely want to have a separate server to handle the private key. This server would run a very simple easy-to-audit code. Ideally, it would use an HSM, but unfortunately last time I checked, there is no easy-to-used HSM for ed25519 used on Algorand. Shielded/Hardened VMs may be a good idea too. If you have your own server, YubiHSM may be an option to securely store your keys (it supports Algorand).
If HSM are not available, you should at least store the keys encrypted under a KSM key or in a "Secret Manager".
This server would require strong authentication from the other services and log everything. You can then have other services checking logs. There can also be additional safeguards in case of too many transactions.
I would also actually recommend using multiple servers over multiple clouds, if possible managed by different people in the organization. You can then use multisig. For availability and recovery in cash of crashes, you most likely also want to have some of the multisig keys available in complete cold storage.
Hope this helps.

Related

How does PasswordVault protect passwords? [duplicate]

I'd like to use Windows.Security.Credentials.PasswordVault in my desktop app (WPF-based) to securely store a user's password. I managed to access this Windows 10 API using this MSDN article.
I did some experiments and it appears that any data written to PasswordVault from one desktop app (not a native UWP app) can be read from any other desktop app. Even packaging my desktop app with Desktop Bridge technology and thus having a Package Identity does not fix this vulnerability.
Any ideas how to fix that and be able storing the app's data secure from other apps?
UPDATE: It appeared that PasswordVault adds no extra security over DPAPI. The case is closed with a negative result.
(this is from what I can understand of your post)
There is no real way of preventing data access between desktop apps when using these kind of API's http://www.hanselman.com/blog/SavingAndRetrievingBrowserAndOtherPasswords.aspx tells more about it. You'd probably just want to decrypt your information.
memory access restriction is difficult, code executed by the user is always retrievable by the user so it would be difficult to restrict this.
have you considered using the Windows Data Protection API :
https://msdn.microsoft.com/en-us/library/ms995355.aspx
grabbed straight from the source
DPAPI is an easy-to-use service that will benefit developers who must provide protection for sensitive application data, such as passwords and private keys
WDPAPI uses keys generated by the operating system and Triple DES to encrypt/decrypt your data. Which means your application doesn't have to generate these keys, which is always nice.
You could also use the Rfc2898DeriveBytes class, this uses a pseudo-random number generator to decrypt your password. It's safer than most decrypters since there is no practical way to go back from the result back to the password. This is only really useful for verifying the input password and not retrieving it back again. I have never actually used this myself so I would not be able to help you.
https://msdn.microsoft.com/en-us/library/system.security.cryptography.rfc2898derivebytes(v=vs.110).aspx
see also this post which gives a way better explanation than I can.
How to securely save username/password (local)?
If I misunderstood the question in some way, tell me, I will try to update the answer.
NOTE that modern/metro apps do not have this problem, although they still are accessible in other ways.
The hard truth is that storing a password in a desktop application, 100% securely is simply not possible. However, you can get close to 100%.
Regarding your original approach, PasswordVault uses the Credential Locker service which is built into windows to securely store data. Credential Locker is bound to the user's profile. Therefore, storing your data via PasswordVault is essentially equivalent to the master password approach to protecting data, which I talk about in detail further down. Only difference is that the master password in that case is the user's credentials. This allows applications running during the user's session to access the data.
Note: To be clear, I'm strictly talking about storing it in a way that allows you access to the plain text. That is to say, storing it in an encrypted database of any sort, or encrypting it yourself and storing the ciphertext somewhere. This kind of functionality is necessary in programs like password managers, but not in programs that just require some sort of authentication. If this is not a necessity then I strongly recommend hashing the password, ideally per the instructions laid out in this answer by zaph. (Some more information in this excellent post by Thomas Pornin).
If it is a necessity, things get a bit more complicated: If you want to prevent other programs (or users I suppose) from being able to view the plaintext password, then your only real option is to encrypt it. Storing the ciphertext within PasswordVault is optional since, if you use good encryption, your only weak point is someone discovering your key. Therefore the ciphertext itself can be stored anywhere. That brings us to the key itself.
Depending on how many passwords you're actually trying to store for each program instance, you might not have to worry about generating and securely storing a key at all. If you want to store multiple passwords, then you can simply ask the user to input one master password, perform some salting and hashing on that, and use the result as the encryption key for all other passwords. When it is time for decryption, then ask the user to input it again. If you are storing multiple passwords then I strongly urge you to go with this approach. It is the most secure approach possible. For the rest of my post however, I will roll with the assumption that this is not a viable option.
First off I urge you not to have the same key for every installation. Create a new one for every instance of your program, based on securely generated random data. Resist the temptation to "avoid having to store the key" by having it be generated on the fly every time it is needed, based on information about the system. That is just as secure as hardcoding string superSecretKey = "12345"; into your program. It won't take attackers long to figure out the process.
Now, storing it is the real tricky part. A general rule of infosec is the following:
Nothing is secure once you have physical access
So, ideally, nobody would. Storing the encryption keys on a properly secured remote server minimizes the chances of it being recovered by attackers. Entire books have been written regarding server-side security, so I will not discuss this here.
Another good option is to use an HSM (Hardware Security Module). These nifty little devices are built for the job. Accessing the keys stored in an HSM is pretty much impossible. However, this option is only viable if you know for sure that every user's computer has one of these, such as in an enterprise environment.
.Net provides a solution of sorts, via the configuration system. You can store your key in an encrypted section of your app.config. This is often used for protecting connection strings. There are plenty of resources out there on how to do this. I recommend this fantastic blog post, which will tell you most of what you need to know.
The reason I said earlier not to go with simply generating the key on the fly is because, like storing it as a variable in your code, you rely exclusively on obfuscation to keep it secure. The thing about this approach is that it usually doesn't. However, sometimes you have no other option. Enter White Box cryptography.
White box cryptography is essentially obfuscation taken to the extreme. It is meant to be effective even in a white-box scenario, where the attacker both has access to and can modify the bytecode. It is the epitome of security through obscurity. As opposed to mere constant hiding (infosec speak for the string superSecretKey approach) or generating the key when it is needed, white box cryptography essentially relies on generating the cipher itself on the fly.
Entire papers have been written on it, It is difficult to pull off writing a proper implementation, and your mileage may vary. You should only consider this if you really really really want to do this as securely as possible.
Obfuscation however is still obfuscation. All it can really do is slow the attackers down. The final solution I have to offer might seem backwards, but it works: Do not hide the encryption key digitally. Hide it physically. Have the user insert a usb drive when it is time for encryption, (securely) generate a random key, then write it to the usb drive. Then, whenever it is time for decryption, the user only has to put the drive back in, and your program reads the key off that.
This is a bit similar to the master password approach, in that it leaves it up to the user to keep the key safe. However, it has some notable advantages. For instance, this approach allows for a massive encryption key. A key that can fit in a mere 1 megabyte file can take literally billions of years to break via a brute force attack. Plus, if the key ever gets discovered, the user has only themselves to blame.
In summary, see if you can avoid having to store an encryption key. If you can't, avoid storing it locally at all costs. Otherwise, your only option is to make it as hard for hackers to figure it out as possible. No matter how you choose to do that, make sure that every key is different, so even if attackers do find one, the other users' keys are safe.
Only alternative is to encrypt password with your own private key stored somewhere in your code. (Someone can easily disassemble your code and get the key) and then store encrypted password inside PasswordVault, however the only security you have is any app will not have access to password.
This is dual security, in case of compromised machines, attacker can get access to PasswordVault but not your password as they will need one more private key to decrypt the password and that will be hidden somewhere in your code.
To make it more secure, if you leave your private key on your server and expose an API to encrypt and decrypt password before storing in Vault, will make it most secure. I think this is the reason people have moved on to OAuth (storing OAuth token in PasswordVault) etc rather then storing password in vault.
Ideally, I would recommend not storing password, instead get some token from server and save it and use that token for authentication. And store that token in PasswordVault.
It is always possible to push the security, with miscellaneous encryption and storage strategies. Making something harder is only making the data retrieval longer, never impossible. Hence you need to consider the most appropriate level of protection considering execution cost x time (human and machine) and development cost x time aspects.
If I consider strictly your request, I would simply add a layer (class, interface) to cipher your passwords. Best with asymmetrical encryption (and not RSA). Supposing the other softs are not accessing your program data (program, files OR process), this is sufficient. You can use SSH.NET (https://github.com/sshnet/SSH.NET) to achieve this quickly.
If you would like to push the security and give a certain level of protection against binary reverse-engineering (including the private key retrieval), I recommend a small (process limited) encrypted VM (like Docker, https://blogs.msdn.microsoft.com/mvpawardprogram/2015/12/15/getting-started-with-net-and-docker/) based solution such as Denuvo (https://www.denuvo.com/). The encryption is unique per customer and machine based. You'll have to encapsulated you c# program into a c/c++ program (which acts like a container) that will do all the in-memory ciphering-deciphering.
You can implement your own strategy, depending on the kind of investment and warranty you require.
In case your program is a backend program, you can pick the best strategy (the only I really recommend) of all which is to store the private key at the client side, public key at backend side and have local deciphering, all transmitted password would be hence encrypted. I would like to remark that password and keys are actually different strategies to achieve the same goal: checking if the program talks to the right person without knowing the person's identity; I mean this: instead of storing passwords, better store directly public keys.
Revisiting this rather helpful issue and adding a bit of additional information which might be helpful.
My task was to extend a Win32 application that uses passwords to authenticate with an online service with a "save password" functionality. The idea was to protect the password using Windows Hello (UserConsentVerifier). I was under the impression that Windows surely has something comparable to the macOS keychain.
If you use the Windows Credential Manager APIs (CredReadA, CredWriteA), another application can simply enumerate the credentials and if it knows what to look for (the target name), it will be able to read the credential.
I also explored using DPAPI where you are in charge of storing the encrypted blob yourself, typically in a file. Again, there seems to be no way (except obfuscation) to prevent another application from finding and reading that file. Supplying additional entropy to CryptProtectData and CryptUnprotectData again poses the question of where to store the entropy (typically I assume it would be hard-coded and perhaps obfuscated in the application: this is security by obscurity).
As it turns out, neither DPAPI (CryptProtectData, CryptUnprotectData) nor Windows Credential Manager APIs (CredRead, CredWrite) can prevent another application running under the same user from reading a secret.
What I was actually looking for was something like the macOS keychain, which allows applications to store secrets, define ACLs on those secrets, enforce biometric authentication on accessing the secret, and critically, prevents other applications from reading the secrets.
As it turns out, Windows has a PasswordVault which claims to isolate apps from each other, but its only available to UWP apps:
Represents a Credential Locker of credentials. The contents of the locker are specific to the app or service. Apps and services don't have access to credentials associated with other apps or services.
Is there a way for a Win32 Desktop application to access this functionality? I realize that if a user can be brought to install and run a random app, that app could probably mimic the original application and just prompt the user to enter the secret, but still, it's a little disappointing that there is no app-level separation by default.

Independent Contractor-suitable Key Management

I'm an independent contractor / sole proprietor who manages half-a-dozen servers and numerous services.
I've started using key-based authentication more and more often instead of passwords, but now it's becoming a challenge to keep the keys both: a) secure and b) remotely accessible to myself.
I could make them accessible by putting them in a cloud-based service like Dropbox, but that wouldn't keep them secure. I could put them within a password-protected file in Dropbox, but that seems counter-intuitive to the point of using keys. Although, it would provide the benefit of having fewer passwords to deal with overall, so maybe that is the best way to do it.
I know that there are numerous solutions for businesses, but as business of one, I need a solution that is affordable and has low overhead.
Any insight or recommendations would be appreciated.
Plenty of commercial options like LastPass. However, if you want to do the DIY thing make sure to add pass-phrases to your private keys so they are unusable without entering the secret. In place of Drop Box you might consider SpiderOak as it features end to end encryption, what is stored on the cloud is encrypted and your the only party with the key phrase.

What's the best place to hide long lived encryption keys

I am considering encryption options for a new Sybase project. I am thinking that Sybase encryption is the wrong strategy because a) dba's can get in, and b) if and when we migrate to SQL Server or Oracle I don't want to deal with different encryption strategies.
Therefore I'm thinking to encrypt the sensitive data (symmetric encryption) in my Java code before storing it in the DB.
Now, the encrypted fields better not have their encryption key changed, ever, except in a very controlled environment, which for me effectively means never. So it's going to be a permanent password.
The question is, where should I keep this password in a way that it is accessible from the program but not accessible to anyone else. If it's in a properties file, any developer with access to our Git repo could see it.
We could hard code it in the source code, but good lawd, that's a bad practice.
We could generate it in source, like the 10th Fibonacci or 3!+8! that would be hard to locate, but it's still rather exposed.
We could have the sa's maintain it in the environment, but then where do they file it for future reference?
So many poor choices. Are there any good ones?
Simply using some secret code to create the key on the fly is both an insecure method and produces a poor key. The DB keep needs to be a random byte array. Keep in mind that the key needs to be in memory when used which will be most of the time for the DB.
WRT using the DB encryption, examine closely if the algorithm is fully specified and compatibility to another DB. There is also the possibility that the entire DB will need to be run-off and then added to a new DB, in that case using the internal DB encryption will be transparent.
You really need to consider needing to be able to change the encryption key in the future, what will you do if it is ever compromised? There are solutions to this dilemma. There may be a substantial performance penalty performing the encryption outside the DB, there is a substantial setup time for each new encryption operation. Also since not all columns will be encrypted (a good guess) that information is not shared by the DB and the outside encryption code, that coupling is not good for design nor maintenance.
Do not connect the DB server to the Internet, make it separate and connected with a non-networked connection such as direct Ethernet. This also limited the number of admin users of the only system that contains the encryption key.
Another important part of the solution is to restrict admin access to the server. This includes requiring two-factor authentication as well as severely limiting the number of administrators. You need to control the second-factor to physical serial-numbered devices owned by the organization so that they can be positively retrieved on personnel changes and not copied. Personally I favor RSA SecureID (or similar) hardware devices, there is positive control.
Finally in answer to the question, keep the key in a file on the DB server secured as above, that is with no Internet access and restricted admin access.

Safely storing passwords when access to the plaintext is still needed [duplicate]

This question already has answers here:
Closed 12 years ago.
Possible Duplicate:
PHP 2-way encryption: I need to store passwords that can be retrieved
I know that the best practice for storing user passwords is to store only an irreversible hash of the password.
However, I am developing an application where I will need to store a user's login information for another web service -- I'll need to periodically log them in and perform some maintenance tasks. Unfortunately, the service doesn't offer authorization tokens so I (very apprehensively) have to store the passwords in a way that I can access their plain-text values. I don't own or control the service to which I am authenticating, and the only method is to 'borrow' a users username and password and authenticate.
I am planning to AES_ENCRYPT the passwords in the DB, which means that if somebody is somehow able to access the DB they won't be able to get the plaintext. However my code will need to have access to the key to unencrypt them, thus if the entire server is compromised this is no protection and the passwords will be revealed.
Aside from the above-described encryption, are there any best practices or steps I can take to do this as safely as possible?
EDIT
I know that whatever I do, ultimately the passwords must be accessible in plaintext and so a compromised server means the passwords will be revealed, but I am wondering what steps I can do to mitigate my risk. E.G. encrypting the DB protects me in the situation where the DB is compromised but not the entire server. Other similar mitigating steps would be much appreciated.
However, I am developing an application where I will need to store a user's login information for another web service -- I'll need to periodically log them in and perform some maintenance tasks.
OK... I read through the answers and the comments, and about all I can say is I hope you have crack legal team. It sounds to me like the service you are offering is predicated on user trust. It's good that it's a user-controlled switch, and not something being helpfully done behind their backs, but I think you want a really iron clad service agreement on this.
That said, there's a lot of security paranoia you can invoke. You'll have to figure out how much you want to go through based on the harm to your product, your company and users if a break in occurs. Here's thoughts:
Data storage - store the passwords far away from where an attacker can get in. Highly access controlled files, a database on a back end machine, etc. Make any attacker have go to through layers of defense just to get to the place the data is stored. Similarly have network protection like firewalls and up to date security patches. No one thing works in isolation here.
Encryption - any encryption technique is a delaying tactic - one the attacker has your data, they will eventually crack your encryption given an infinite amount of time. So mostly you're aiming to slow them down long enough for the rest of the system to discover you've been hacked, alert your users, and give the users time to change passwords or disable accounts. IMO - either symmetric or assymetric cryptography will work - so long as you store the key securely. Being a PKI person myself, I'd lean towards assymmetric crypto just because I understand it better and know of a number of COTS hardware solutions that make it possible to store my private key extremely securely.
Key storage - your encryption is only as good as your key storage. If the key is sitting right next to the encrypted data, then it stands to reason that the attacker doesn't need to break your crypto, they just use the key. HSM (hardware security modules) are the high end choice for key storage - at the upper ranges these are secure boxes that are tamper proof which both hold your keys and perform crypto for you. At the low end, a USB token or Smart Card could perform the same function. A critical part of this is that ultimately, it's best if you make an admin activate key access on server startup. Otherwise, you end up with a chicken and egg scenario as you try to figure out how to securely store the ultimate password.
Intrusion detection - have a good system in place that has a good chance of raising alarms if you should get hacked. If your password data is compromised, you want to get the word to your users well ahead of any threat.
Audit logging - have really good records of who did what on the system - particularly in the vicinity of your passwords. While you could create a pretty awesome system, the threat of privileged users doing something bad (or dumb) is just as bad as external threats. The typical high end auditing systems track high privilege user behavior in a way that can't be viewed or tampered with by the high privilege user - instead, there's a second "auditor" account that deals only with audit logs and nothing else.
This is a highlight of the high points of system security. My general point is - if you are serious about protecting user passwords, you can't afford to just think about the data. Just encrypting the passwords is not likely to be enough to really protect users and safeguard trust.
The standard way to approach this is to consider the cost of explotation vs. the cost of protection. If both costs are too high for the value of the feature, then you have a good indication that you shouldn't bother doing it...
As you said, your code will eventually need the key and so if the server is compromised, so will be the passwords. There is no way around it.
What you can do is have a very minimal proxy whose only job will be to have the passwords, listen to the requests from your main application, connect to the service in question, and return the response to your application. If that very simple proxy is all that is running on a server then it will be much less likely to be compromised than a complicated application running on a server with many services.

Security risk when store private data

I have to handle some sensitive data in my application, such as passwords, credit card information, etc.
What are possible security risks I could have and how can I avoid them?
Don't store Credit Card Information (in some jurisdictions, you might be breaking the law by doing so, or at least falling foul of a commercial agreement)
You don't say where your sensitive data is stored, but encypting it is the usual approach. There are two forms symmetric and asymmetric. Symmetric means you use the same key for encrypting and decrypting. Asymmetric consists of a public/private key pair.
Passwords: store only a salted hash (i.e. un-reversible) of your passwords, and compare with a similarly salted hash of an entered password.
Be aware that you really shouldn't store credit card info in any shape or form on a web server.
Bit of info on doing this in a web environment, which is my background:
If a website (or any application) needs to store card info, it should comply with the PCI DSS (Payment Cards Industry Data Security Standard). Amongst other things, it requires that the data be held encrypted on a separate server that isn't publicly accessible (IE: isn't hosting the site) and has a separate firewall between it and the webserver. Penalties for not complying are potentially very large in the event of any fraudulent activity following a security breach, and can include them ceasing working with you - it pretty much reserves the right for the them to chargeback any losses from the fraud to you (from my interpretation as a non legal person)
More on it here: https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
Obviously, this may be expensive compared to shared hosting, as you immediately need two servers and a load of networking gear. Which is why people don't often do this.
I would be inclined to perform some form of reversible encryption on the information as it's being stored, something like:
$card = myEncryptionFunction($input);
A little more information on the nature of your application wouldn't hurt though.
I'd be using reversible encryption on the database data. Make sure this data doesn't seep into log-files too, log derived information instead. Consider how yoǘ'll handle different environments - normally you want to not use production data in your test environments. So even though you may consider copying production data back to test systems, you should probably generate fake data for the sensitive parts.
It's been already said that you shouldn't store CC especially CVV2 information in your database, avoid where possible.
If you store CC + CVV2 then consider using asymmetric encryption and store your private key in another server. Otherwise an attacker who can access the data 99% can access the key and the whole encryption would be pointless.
Passwords should be stored as one way hashed.
After all these you need to ensure that your application is secure against vulnerabilities such as SQL Injeciton, remote code execution etc.
Don't forget Even when an attacker can't read previous data they can plant a backdoor for the next data.

Resources