I want to DER encode a nested data structure using the der crate of the RustCrypto project. I have a Vec of SetOfVecs. There should be a blanket implementation of der::Encode for SetOfVec, but the compiler does not recognize it:
// Add this to Cargo.toml:
// ...
// [dependencies]
// der = { version = "0.6", features = ["alloc", "oid"]}
// main.rs:
use der::{DecodeValue, Encode, Header, Reader, Sequence};
use der::asn1::{ObjectIdentifier, SetOfVec};
struct NestedType(Vec<SetOfVec<ObjectIdentifier>>);
impl<'a> DecodeValue<'a> for NestedType {
fn decode_value<R: Reader<'a>>(reader: &mut R, header: Header) -> der::Result<Self> {
Ok(reader.decode()?)
}
}
impl<'a> Sequence<'a> for NestedType {
fn fields<F, T>(&self, field_encoder: F) -> der::Result<T>
where
F: FnOnce(&[&dyn Encode]) -> der::Result<T>,
{
// This works
// (the following 3 lines are just for comparison with the failing case)
let encoder1 = SetOfVec::<ObjectIdentifier>::new();
let encoder2 = SetOfVec::<ObjectIdentifier>::new();
field_encoder(&[&encoder1, &encoder2])?;
// This doesn't work
let mut refs: Vec<&SetOfVec<ObjectIdentifier>> = Vec::new();
for rdn in self.0.iter() {
refs.push(rdn);
}
field_encoder(refs.as_slice())
}
}
fn main() {}
The compiler error:
error[E0308]: mismatched types
--> src\main.rs:33:23
|
33 | field_encoder(refs.as_slice())
| ^^^^^^^^^^^^^^^ expected trait object `dyn Encode`, found struct `SetOfVec`
|
= note: expected reference `&[&dyn Encode]`
found reference `&[&SetOfVec<der::asn1::ObjectIdentifier>]`
As the Encode trait is implemented for SetOfVec, there should be no error. What's the problem here?
Looks like the compiler needs more info. The following code creates a Vec<&dyn Encode> with the references pointing to the SetOfVecs in the original Vec. This should also solve the memory allocation issue, that #Chayim Friedman mentioned (please correct me, if I'm wrong):
impl<'a> Sequence<'a> for NestedType {
fn fields<F, T>(&self, field_encoder: F) -> der::Result<T>
where
F: FnOnce(&[&dyn Encode]) -> der::Result<T>,
{
let mut refs: Vec<&dyn Encode> = Vec::new();
for rdn in self.0.iter() {
refs.push(rdn);
}
field_encoder(refs.as_slice())
}
}
Related
I am trying to pass around a HashMap which stores values through a set of nested enums/structs. The problem of multiple mutability happens during iteration, even all references should be dropped.
The general idea is to have a vector of values, iterate through them and simplify them, keeping track of them within the HashMap. There are two stages of simplification.
The general flow looks something like
run(Vec<ComplexVal>)
-for each val->
val.fix_complex(holder)
-for each `smp` SimpleVal in val->
basicval = Simplifier::step(smp, holder)
holder.insert("name", basicval)
But the problem is that the holder is borrowed mutably in each stage, and there isn't supposed to be any reference from the ComplexVal to the holder and since the borrowchecker doesn't like multiple borrows, it fails.
Full playground snippet: here
It happens in this snippet:
pub fn run(&mut self, mut vals: Vec<ComplexVal>) {
let mut holder = Holder{hold:HashMap::new()};
// .. setup holder code omitted
let len = vals.len();
for _ in 0..len {
let mut val = vals.remove(0); // remove from vec, should drop after running
println!("Running {:?}", val);
match val {
ComplexVal::Cmplx1(mut c) => {
c.fix_complex(&mut holder)
},
//... more cases of different types of values omitted for simplicity
}
// val *should* be dropped here, and therefore the mutable borrow of holder?
}
println!("Holder: {:?}", holder);
}
}
The only thing I can think of is that it somehow is related to the BasicVal::Ref(&BasicVal) value when created.
I need to return a reference of type &BasicVal so I can't use a regular fn() -> &BasicVal as the reference would be dangling, so I pass a ret value which is to be modified and used as the storage for the return value.
I have also tried just returning the enum BasicVal::Ref(&BasicVal), but run into the same mutability issues.
The example below is a much more simple version which (sort of) demonstrates the same error, just thought I'd include this context in case someone has another idea on how to implement this which wouldn't have these issues
Code (edited)
Updated playground link
Edit: I made a mistake in not needing the lifetimes of both holder and ret to explicitly be the same, so I have made an updated example for it
use std::borrow::BorrowMut;
///////////////////////////////
use std::cell::{RefCell, RefMut};
use std::collections::HashMap;
#[derive(Debug)]
enum BasicVal<'a> {
Ref(&'a BasicVal<'a>),
Val1(BasicStruct),
}
#[derive(Debug)]
struct Holder<'b> {
hold: HashMap<String, RefCell<BasicVal<'b>>>,
}
#[derive(Debug)]
struct BasicStruct {
val: i32,
}
impl<'a> BasicVal<'a> {
pub fn empty() -> Self { BasicVal::Val1(BasicStruct { val: 0 }) }
}
// must match sig of modify_val_ref
fn modify_val<'f>(holder: &'f mut Holder<'f>, mut ret: RefMut<BasicVal<'f>>) {
*ret = BasicVal::Val1(BasicStruct { val: 5 });
}
// must match sig of modify_val
fn modify_val_ref<'f>(holder: &'f mut Holder<'f>, mut ret: RefMut<BasicVal<'f>>) {
ret = holder.hold.get("reference_val").unwrap().borrow_mut();
}
fn do_modify<'f>(holder: &'f mut Holder<'f>) {
let mut v = RefCell::new(BasicVal::empty());
println!("Original {:?}", v);
modify_val(holder, v.borrow_mut());
holder.hold.insert("Data".to_string(), v);
println!("Modified {:?}", holder.hold.get("Data"));
}
pub fn test_dropborrow() {
let mut holder = Holder { hold: HashMap::new() };
holder.hold.insert(
"reference_val".to_string(),
RefCell::new(BasicVal::Val1(BasicStruct { val: 8 })),
);
do_modify(&mut holder);
}
pub fn main() {
test_dropborrow();
}
Edit: Using just the holder for a temp return value gives me a multiple mutable borrow issue, so that workaround doesn't work. I have also tried it with a RefCell with the same issue.
fn modify_val<'f>(holder: &'f mut Holder<'f>) {
holder.hold.insert("$return".to_string(), BasicVal::Val1(BasicStruct{val: 5}));
}
fn do_modify<'f>(holder: &'f mut Holder<'f>) {
modify_val(holder);
let mut v = holder.hold.remove("$return").unwrap();
holder.hold.insert("Data".to_string(), v);
println!("Modified {:?}", v);
}
Error:
935 | fn do_modify<'f>(holder: &'f mut Holder<'f>) {
| -- lifetime `'f` defined here
936 |
937 | modify_val(holder);
| ------------------
| | |
| | first mutable borrow occurs here
| argument requires that `*holder` is borrowed for `'f`
938 | let mut v = holder.hold.remove("$return").unwrap();
| ^^^^^^^^^^^ second mutable borrow occurs here
Any help is greatly appreciated!!!
Figured it out, essentially the BasicVal<'a> was causing Holder to mutably borrow itself in successive iterations of the loop, so removing the lifetime was pretty much the only solution
I am trying to rewrite an algorithm from javascript to rust. In the following code, I get borrowed value does not live long enough error at line number 17.
[dependencies]
scraper = "0.11.0"
use std::fs;
fn get_html(fname: &str) -> String {
fs::read_to_string(fname).expect("Something went wrong reading the file")
}
pub mod diff_html {
use scraper::{element_ref::ElementRef, Html};
pub struct DiffNode<'a> {
node_ref: ElementRef<'a>,
}
impl<'a> DiffNode<'a> {
fn from_html(html: &str) -> Self {
let doc = Self::get_doc(&html);
let root_element = doc.root_element().to_owned();
let diffn = Self {
node_ref: root_element,
};
diffn
}
fn get_doc(html: &str) -> Html {
Html::parse_document(html).to_owned()
}
}
pub fn diff<'a>(html1: &str, _html2: &str) -> DiffNode<'a> {
let diff1 = DiffNode::from_html(&html1);
diff1
}
}
fn main() {
//read strins
let filename1: &str = "test/test1.html";
let filename2: &str = "test/test2.html";
let html1: &str = &get_html(filename1);
let html2: &str = &get_html(filename2);
let diff1 = diff_html::diff(html1, html2);
//write html
//fs::write("test_outs/testx.html", html1).expect("unable to write file");
//written output file.
}
warning: unused variable: `diff1`
--> src\main.rs:43:9
|
43 | let diff1 = diff_html::diff(html1, html2);
| ^^^^^ help: if this is intentional, prefix it with an underscore: `_diff1`
|
= note: `#[warn(unused_variables)]` on by default
error[E0597]: `doc` does not live long enough
--> src\main.rs:17:32
|
14 | impl<'a> DiffNode<'a> {
| -- lifetime `'a` defined here
...
17 | let root_element = doc.root_element().to_owned();
| ^^^--------------------------
| |
| borrowed value does not live long enough
| assignment requires that `doc` is borrowed for `'a`
...
22 | }
| - `doc` dropped here while still borrowed
I want a detailed explanation/solution if possible.
root_element which is actually an ElementRef has reference to objects inside doc, not the actual owned object. The object doc here is created in from_html function and therefore owned by the function. Because doc is not returned, it is dropped / deleted from memory at the end of from_html function block.
ElementRef needs doc, the thing it is referencing to, to be alive when it is returned from the memory.
pub mod diff_html {
use scraper::{element_ref::ElementRef, Html};
pub struct DiffNode<'a> {
node_ref: ElementRef<'a>,
}
impl<'a> DiffNode<'a> {
fn from_html(html: &'a scraper::html::Html) -> Self {
Self {
node_ref: html.root_element(),
}
}
}
pub fn diff<'a>(html1_string: &str, _html2_string: &str) {
let html1 = Html::parse_document(&html1_string);
let diff1 = DiffNode::from_html(&html1);
// do things here
// at the end of the function, diff1 and html1 is dropped together
// this way the compiler doesn't yell at you
}
}
More or less you need to do something like this with diff function to let the HTML and ElementRef's lifetime to be the same.
This behavior is actually Rust's feature to guard values in memory so that it doesn't leak or reference not referencing the wrong memory address.
Also if you want to feel like operating detachable objects and play with reference (like java, javascript, golang) I suggest reading this https://doc.rust-lang.org/book/ch15-05-interior-mutability.html
I'm trying to write a Rocket / Juniper / Rust based GraphQL Server using PickleDB - an in-memory key/value store.
The pickle db is created / loaded at the start and given to rocket to manage:
fn rocket() -> Rocket {
let pickle_path = var_os(String::from("PICKLE_PATH")).unwrap_or(OsString::from("pickle.db"));
let pickle_db_dump_policy = PickleDbDumpPolicy::PeriodicDump(Duration::from_secs(120));
let pickle_serialization_method = SerializationMethod::Bin;
let pickle_db: PickleDb = match Path::new(&pickle_path).exists() {
false => PickleDb::new(pickle_path, pickle_db_dump_policy, pickle_serialization_method),
true => PickleDb::load(pickle_path, pickle_db_dump_policy, pickle_serialization_method).unwrap(),
};
rocket::ignite()
.manage(Schema::new(Query, Mutation))
.manage(pickle_db)
.mount(
"/",
routes![graphiql, get_graphql_handler, post_graphql_handler],
)
}
And I want to retrieve the PickleDb instance from the Rocket State in my Guard:
pub struct Context {
pickle_db: PickleDb,
}
impl juniper::Context for Context {}
impl<'a, 'r> FromRequest<'a, 'r> for Context {
type Error = ();
fn from_request(_request: &'a Request<'r>) -> request::Outcome<Context, ()> {
let pickle_db = _request.guard::<State<PickleDb>>()?.inner();
Outcome::Success(Context { pickle_db })
}
}
This does not work because the State only gives me a reference:
26 | Outcome::Success(Context { pickle_db })
| ^^^^^^^^^ expected struct `pickledb::pickledb::PickleDb`, found `&pickledb::pickledb::PickleDb`
When I change my Context struct to contain a reference I get lifetime issues which I'm not yet familiar with:
15 | pickle_db: &PickleDb,
| ^ expected named lifetime parameter
I tried using 'static which does make rust quite unhappy and I tried to use the request lifetime (?) 'r of the FromRequest, but that does not really work either...
How do I get this to work? As I'm quite new in rust, is this the right way to do things?
I finally have a solution, although the need for unsafe indicates it is sub-optimal :)
#![allow(unsafe_code)]
use pickledb::{PickleDb, PickleDbDumpPolicy, SerializationMethod};
use serde::de::DeserializeOwned;
use serde::Serialize;
use std::env;
use std::path::Path;
use std::time::Duration;
pub static mut PICKLE_DB: Option<PickleDb> = None;
pub fn cache_init() {
let pickle_path = env::var(String::from("PICKLE_PATH")).unwrap_or(String::from("pickle.db"));
let pickle_db_dump_policy = PickleDbDumpPolicy::PeriodicDump(Duration::from_secs(120));
let pickle_serialization_method = SerializationMethod::Json;
let pickle_db = match Path::new(&pickle_path).exists() {
false => PickleDb::new(
pickle_path,
pickle_db_dump_policy,
pickle_serialization_method,
),
true => PickleDb::load(
pickle_path,
pickle_db_dump_policy,
pickle_serialization_method,
)
.unwrap(),
};
unsafe {
PICKLE_DB = Some(pickle_db);
}
}
pub fn cache_get<V>(key: &str) -> Option<V>
where
V: DeserializeOwned + std::fmt::Debug,
{
unsafe {
let pickle_db = PICKLE_DB
.as_ref()
.expect("cache uninitialized - call cache_init()");
pickle_db.get::<V>(key)
}
}
pub fn cache_set<V>(key: &str, value: &V) -> Result<(), pickledb::error::Error>
where
V: Serialize,
{
unsafe {
let pickle_db = PICKLE_DB
.as_mut()
.expect("cache uninitialized - call cache_init()");
pickle_db.set::<V>(key, value)?;
Ok(())
}
}
This can be simply imported and used as expected, but I think I'll run into issues when the load gets to high...
This question already has answers here:
Is there any way to return a reference to a variable created in a function?
(5 answers)
Closed 3 years ago.
I am trying to create a lexical analyzer which uses itertools::PutBack to make an iterator over the characters in a String. I intend to store the pushback iterator in a struct and delegate methods to it so that I can categorize the characters by an enum, which will then be passed to a state machine at the core of the lexical analyzer (not yet written).
The borrow-checker is not happy with me. Method ParserEventIterator::new near the bottom of the listing causes the error. How do I define the lifetimes or borrowing so that I can get this to compile? Or what Rustic data structure design should I use in its stead?
Ultimately, I would like this to implement the appropriate traits to become a proper iterator. (Newbie to Rust. Prior to this, I have programmed in 28 languages, but this one has me stumped.)
Here is a code sample:
extern crate itertools;
use itertools::put_back;
use std::fmt::Display;
use std::fmt::Formatter;
use std::fmt::Result;
pub enum ParserEvent {
Letter(char),
Digit(char),
Other(char),
}
impl ParserEvent {
fn new(c: char) -> ParserEvent {
match c {
'a'...'z' | 'A'...'Z' => ParserEvent::Letter(c),
'0'...'9' => ParserEvent::Digit(c),
_ => ParserEvent::Other(c),
}
}
}
impl Display for ParserEvent {
fn fmt(&self, f: &mut Formatter) -> Result {
let mut _ctos = |c: char| write!(f, "{}", c.to_string());
match self {
ParserEvent::Letter(letter) => _ctos(*letter),
ParserEvent::Digit(digit) => _ctos(*digit),
ParserEvent::Other(o) => _ctos(*o),
}
}
}
// ParserEventIterator
// Elements ('e) must have lifetime longer than the iterator ('i).
pub struct ParserEventIterator<'i, 'e: 'i> {
char_iter: &'i mut itertools::PutBack<std::str::Chars<'e>>,
}
impl<'i, 'e: 'i> ParserEventIterator<'i, 'e> {
fn new(s: &'e std::string::String) -> ParserEventIterator<'i, 'e> {
// THIS NEXT LINE IS THE LINE WITH THE PROBLEM!!!
ParserEventIterator {
char_iter: &mut put_back(s.chars()),
}
}
fn put_back(&mut self, e: ParserEvent) -> () {
if let Some(c) = e.to_string().chars().next() {
self.char_iter.put_back(c);
}
}
}
impl<'i, 'e: 'i> Iterator for ParserEventIterator<'i, 'e> {
type Item = ParserEvent;
fn next(&mut self) -> Option<ParserEvent> {
match self.char_iter.next() {
Some(c) => Some(ParserEvent::new(c)),
None => None,
}
}
}
fn main() {
let mut _i = ParserEventIterator::new(&String::from("Hello World"));
}
On the Rust Playground
error[E0515]: cannot return value referencing temporary value
--> src/main.rs:43:9
|
43 | / ParserEventIterator {
44 | | char_iter: &mut put_back(s.chars()),
| | ------------------- temporary value created here
45 | | }
| |_________^ returns a value referencing data owned by the current function
Well, the compiler is almost telling you the solution by reflecting to the obvious problem: you can't have a borrow which doesn't live long enough, i.e. the borrow would point to a nonexistent location after the stack memory of the function has been destroyed.
This would happen because the borrow is referencing an object (in this case an itertools::struct::PutBack instance) that has been newly created within the function body. This instance gets destroyed at the end of the function along with all the references to it. So the compiler is preventing you to have a so called dangling pointer.
Thus, instead of borrowing you should move the PutBack instance into your struct:
// ...
pub struct ParserEventIterator<'e> {
char_iter: itertools::PutBack<std::str::Chars<'e>>
}
impl<'e> ParserEventIterator<'e> {
fn new(s: &'e std::string::String) -> ParserEventIterator<'e> {
ParserEventIterator { char_iter: put_back(s.chars()) }
}
// ...
}
I am writing a program to use wirefilter in order to filter data from an infinite stream.
But it seems that I cannot use a compiled ast in a loop because of lifetimes and when I try to compile, this is the output:
error: borrowed data cannot be stored outside of its closure
--> src/main.rs:34:33
|
31 | let filter = ast.compile();
| ------ ...so that variable is valid at time of its declaration
32 |
33 | for my_struct in data.filter(|my_struct| {
| ----------- borrowed data cannot outlive this closure
34 | let execution_context = my_struct.execution_context();
| ^^^^^^^^^ ----------------- cannot infer an appropriate lifetime...
| |
| cannot be stored outside of its closure
error: aborting due to previous error
error: Could not compile `wirefilter_playground`.
To learn more, run the command again with --verbose.
main.rs
use wirefilter::{ExecutionContext, Scheme};
lazy_static::lazy_static! {
static ref SCHEME: Scheme = Scheme! {
port: Int
};
}
#[derive(Debug)]
struct MyStruct {
port: i32,
}
impl MyStruct {
fn scheme() -> &'static Scheme {
&SCHEME
}
fn execution_context(&self) -> ExecutionContext {
let mut ctx = ExecutionContext::new(Self::scheme());
ctx.set_field_value("port", self.port).unwrap();
ctx
}
}
fn main() -> Result<(), failure::Error> {
let data = expensive_data_iterator();
let scheme = MyStruct::scheme();
let ast = scheme.parse("port in {2 5}")?;
let filter = ast.compile();
for my_struct in data.filter(|my_struct| {
let execution_context = my_struct.execution_context();
filter.execute(&execution_context).unwrap()
}).take(10) {
println!("{:?}", my_struct);
}
Ok(())
}
fn expensive_data_iterator() -> impl Iterator<Item=MyStruct> {
(0..).map(|port| MyStruct { port })
}
Cargo.toml
[package]
name = "wirefilter_playground"
version = "0.1.0"
edition = "2018"
[dependencies]
wirefilter-engine = "0.6.1"
failure = "0.1.5"
lazy_static = "1.3.0"
is it possible to make it work? I would like to yield only the filtered data for the final user otherwise the amount of data would be huge in memory.
Thank you in advance!
It looks like the problem is with the lifetime elision in return structs. In particular this code:
fn execution_context(&self) -> ExecutionContext {
//...
}
is equivalent to this one:
fn execution_context<'s>(&'s self) -> ExecutionContext<'s> {
//...
}
Which becomes obvious once you realize that ExecutionContext has an associated lifetime.
The lifetime of ExecutionContext does not have to match that of the MyStruct so you probably want to write:
fn execution_context<'e>(&self) -> ExecutionContext<'e> {
//...
}
or maybe:
fn execution_context<'s, 'e>(&'s self) -> ExecutionContext<'e>
where 'e: 's {
//...
}
depending on whether your context will eventually refer to any content of MyStruct.