Custom Column Transformer. Problems with training - scikit-learn

I am having the following problem while trying to implement pipeline
For the preprocessor, I want to combine adding a new column and processing all other columns. It works as it should
features = ['Pclass', 'Sex', 'Age', 'Parch', 'SibSp','Embarked']
target = ['Survived']
num_features = data[features].select_dtypes(include=['int64', 'float64']).columns
cat_features = data[features].select_dtypes(include=['object']).columns
X_train = data[features]
y_train = data['Survived']
class Add_family(BaseEstimator, TransformerMixin):
def __init__(self, add_family = True):
self.ad_family = add_family
def fit(self, X, y= None):
return self
def transform(self, X, y= None):
df=pd.DataFrame(X).copy()
if self.ad_family:
df['Family_size'] = df.apply(lambda x: x.Parch + x.SibSp + 1, axis=1)
def get_family_type(var):
if var == 1:
return 'alone'
elif var<=4:
return 'small'
else:
return 'big'
df['FamilyType'] = df.apply(lambda x: get_family_type(x.Family_size), axis = 1)
df = df.drop(columns=['Parch', 'SibSp'])
return df
num_transformer = Pipeline([('scaler', StandardScaler()),
('imputer',SimpleImputer(strategy='mean'))])
cat_transformer = Pipeline([('onehot', OneHotEncoder(handle_unknown='ignore'))])
col_transform = ColumnTransformer([
('cat', cat_transformer, make_column_selector(dtype_include=object)),
('num', num_transformer, make_column_selector(dtype_include=np.number))])
preprocessor = Pipeline([('Adder_features', Add_family(add_family=True)),
('transform', col_transform)])
data_f = preprocessor.fit_transform(X_train)
pd.DataFrame(data_f)
But when I try to train the model I get the following error
lr = Pipeline([('prep', preprocessor),
('clf', LogisticRegression())])
lr.fit(X_train, y_train)
TypeError: cannot unpack non-iterable NoneType object
enter image description here

Related

Normalizing multivariate time-series data with different sequence length

I have a multivariate time-series dataset with different sequence lengths. I filled the missing values in the sequences with zeros. I am trying to use a recurrent neural network model for forcasting with Time Series. I noticed my results of the model degrade when the range of the data is outside -1 and 1. I wrote the following normalization class using MinMaxScaler. However, I don't know how to exclude the missing values in the sequences during computation of MinMaxScaler. Here is my code
from sklearn.preprocessing import MinMaxScaler
from collections import OrderedDict
import numpy as np
import torch
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def get_mask_from_sequence_lengths(
sequence_lengths: torch.Tensor, max_length: int
) -> torch.BoolTensor:
# (batch_size, max_length)
ones = sequence_lengths.new_ones(sequence_lengths.size(0), max_length)
range_tensor = ones.cumsum(dim=1)
return sequence_lengths.unsqueeze(1) >= range_tensor
class Normalizer1D(nn.Module):
# Data size of (batch_size, seq_len, input_size)
def __init__(self, input_dim, inputs ):
super(Normalizer1D, self).__init__()
self.input_dim = input_dim
self.to(device)
self._norm = self.build_normalizers(inputs)
max_len=inputs.shape[-1]
data = torch.from_numpy(inputs)
length = torch.LongTensor([torch.max((data[i,0,:]!=0).nonzero()).item()+1 for i in range(data.shape[0])])
mask = get_mask_from_sequence_lengths( length, max_len)
def build_normalizers(self, x):
normalizers = OrderedDict()
for i in range(self.input_dim):
if np.min(x[:,i,:])<0:
scaler = MinMaxScaler(feature_range=(-1, 1))
else:
scaler = MinMaxScaler(feature_range=(0, 1))
scaler = scaler.fit(x[:,i,:])
normalizers[str(i)] = scaler
return normalizers
def normalize(self, x):
#(B, D, T)
d = x.cpu().detach().numpy()
n_x=[]
for i in range(x.shape[1]):
n_x.append(self._norm[str(i)].fit_transform(d[:,i,:]))
x =np.stack(n_x, axis=1)
return torch.from_numpy(x).to(device)
def unnormalize(self, x):
#(T, B, D)==>(B, T, D)
d = x.cpu().detach().numpy()
n_x=[]
for i in range(x.shape[1]):
n_x.append(self._norm[str(i)].inverse_transform(d[:,i,:]))
x =np.stack(n_x, axis=1)
return torch.from_numpy(x).to(device)
#property
def min_(self):
#(T, B, D)
min_ = []
for i in range(len(self._norm)):
min_.append(self._norm[str(i)].min_)
return torch.from_numpy(np.stack(min_, axis=1))
#property
def scale_(self):
#(T, B, D)
scale_ = []
for i in range(len(self._norm)):
scale_.append(self._norm[str(i)].scale_)
return torch.from_numpy(np.stack(scale_, axis=1))
def unnormalize_mean(self, x_mu):
Xscale = self.scale_()
Xmin = self.min_()
normX = x_mu.mul_(Xscale)
return normX.add_(Xmin)
def unnormalize_sigma(self, x_sigma):
Xscale =self.scale_()
return x_sigma.mul_(Xscale)
# compute the normalizers
def compute_normalizer(loader_train):
##batch_size, input_dim, seq_len
for i, (u, y) in enumerate(loader_train):
if i ==0:
#input u torch.Size([B, D, T])
inputs = u
outputs = y
else:
inputs = torch.cat([inputs,u], dim=0)
outputs = torch.cat([outputs,y], dim=0)
inputs = inputs.cpu().detach().numpy()
outputs = outputs.cpu().detach().numpy()
# initialization
u_normalizer = Normalizer1D(inputs.shape[1], inputs)
y_normalizer = Normalizer1D(outputs.shape[1], outputs)
return u_normalizer, y_normalizer
I will appreciate if someone could suggest a way to exclude the missing values from the normalization process.

how can I predict only 5 days price in this LSTM model (by pytorch)

class StockDataset(Dataset):
#데이터 셋은 i번째 레코드 값을 주는 역할 수행
def __init__(self, symbol, x_frames, y_frames, start, end):
self.symbol = symbol
self.x_frames = x_frames
self.y_frames = y_frames
self.start = datetime.datetime(*start)
self.end = datetime.datetime(*end)
#위에서 지정했던 데이터, 날짜 값들 다 받아옴
self.data = pdr.DataReader(self.symbol, 'yahoo', self.start, self.end)
def __len__(self):
return len(self.data) - (self.x_frames + self.y_frames) + 1
def __getitem__(self, idx):
global data
#global data_set
#데이터셋 i번째 값 입력받았을때 그걸 출력해줌 데이터를 '리스트'화 하는 것
idx += self.x_frames
data = self.data.iloc[idx-self.x_frames:idx+self.y_frames]
data = data[['High', 'Low', 'Open', 'Close', 'Adj Close', 'Volume']]
data = data.apply(lambda x: np.log(x+1) - np.log(x[self.x_frames-1]+1)) #로그수익률 변환 한뒤, 혹시모를 결측값 위해 1더해줌
global x_ex
global y_ex
x_ex= data[:self.x_frames]
y_ex= data[self.x_frames:]
data = data.values #numpy array로 변환한거
X = data[:self.x_frames]
y = data[self.x_frames:]
return X, y
This one is dataset
class LSTM(nn.Module):
#50분 이후부터 모델설명
def __init__(self, input_dim, hidden_dim, output_dim, num_layers, batch_size, dropout, use_bn):
super(LSTM, self).__init__()
self.input_dim = input_dim
self.hidden_dim = hidden_dim
self.output_dim = output_dim
self.num_layers = num_layers
self.batch_size = batch_size
self.dropout = dropout
self.use_bn = use_bn
self.lstm = nn.LSTM(self.input_dim, self.hidden_dim, self.num_layers)
self.hidden = self.init_hidden()
self.regressor = self.make_regressor()
def init_hidden(self):
return (torch.zeros(self.num_layers, self.batch_size, self.hidden_dim),
torch.zeros(self.num_layers, self.batch_size, self.hidden_dim))
def make_regressor(self):
layers = []
if self.use_bn:
layers.append(nn.BatchNorm1d(self.hidden_dim))
layers.append(nn.Dropout(self.dropout))
layers.append(nn.Linear(self.hidden_dim, self.hidden_dim // 2))
layers.append(nn.ReLU())
layers.append(nn.Linear(self.hidden_dim // 2, self.output_dim))
regressor = nn.Sequential(*layers)
return regressor
def forward(self, x):
lstm_out, self.hidden = self.lstm(x, self.hidden)
y_pred = self.regressor(lstm_out[-1].view(self.batch_size, -1))
return y_pred
This one is model
def test(model, partition, args):
global y_true
global y_pred
global X
testloader = DataLoader(partition['test'],
batch_size=args.batch_size,
shuffle=False, drop_last=True)
model.eval()
test_acc = 0.0
with torch.no_grad():
for i, (X, y) in enumerate(testloader):
X = X.transpose(0, 1).float().to(args.device)
y_true = y[:, :, 3].float().to(args.device)
model.hidden = [hidden.to(args.device) for hidden in model.init_hidden()]
y_pred = model(X)
test_acc += metric(y_pred, y_true)[0]
test_acc = test_acc / len(testloader)
return test_acc
This is test data loader.
# ====== Random Seed Initialization ====== #
seed = 666
np.random.seed(seed)
torch.manual_seed(seed)
parser = argparse.ArgumentParser()
args = parser.parse_args("")
args.exp_name = "exp1_lr"
args.device = 'cuda' if torch.cuda.is_available() else 'cpu'
# ====== Data Loading ====== #
args.symbol = '005930.KS' #원하는 종목
args.batch_size = 4 #배치사이즈
args.x_frames = 5 #수정x 이전 n일치 데이터 이게 너무 길면 1주일 예측 불가능
args.y_frames = 5 #수정y 이후 n일치 데이터 이게 너무 길면 1주일 예측 불가능
# ====== Model Capacity ===== #
args.input_dim = 6
args.hid_dim = 50
args.n_layers = 2 # (은닉층의 레이어 갯수) https://justkode.kr/deep-learning/pytorch-rnn링크 참고
# ====== Regularization ======= #
args.l2 = 0.0001
args.dropout = 0.3
args.use_bn = True
# ====== Optimizer & Training ====== #
args.optim = 'RMSprop' #'RMSprop' #SGD, RMSprop, ADAM...
args.lr = 0.001
args.epoch = 1
# ====== Experiment Variable ====== #
name_var1 = 'lr' # lr=러닝레이트
name_var2 = 'n_layers'#뉴럴 네트워크 몇개를 쌓을것인지?
list_var1 = [0.001, 0.0001, 0.00001]
list_var2 = [1,2,3]
#데이터셋 실제 형성
trainset = StockDataset(args.symbol, args.x_frames, args.y_frames, (2012,1,1), (2021,1,1)) #학습기간
valset = StockDataset(args.symbol, args.x_frames, args.y_frames, (2021,1,2), (2021,12,30)) #검증기간 최소 +6 월, +19 일 안하면 float division by zero 에러 발생 왜?? 21년 기준
testset = StockDataset(args.symbol, args.x_frames, args.y_frames, (2022,1,10), (2022,1,14)) #테스트기간 최소 +6 월, + 25일 안하면 float division by zero 에러 발생. 22년기준
#기간이 일정 영업일 이상을 요구하는듯? <<146 영업일 이상 데이터 요구. 그만큼 안주면 오류남 왜??
partition = {'train': trainset, 'val':valset, 'test':testset}
for var1 in list_var1:
for var2 in list_var2:
setattr(args, name_var1, var1)
setattr(args, name_var2, var2)
print(args)
setting, result = experiment(partition, deepcopy(args))
save_exp_result(setting, result)
#꼭 디렉토리에 있는 파일들 지운다음에 그래프 그려야한다. 안그러면 결과값 전부 겹쳐서 나옴
This one is hyper parameter regulate.
I wonder how can I get result when I set testset length in 5days? (like (2022,1,10) (2022,1,14))
This cord didn't work when I set testset length at least 7month (maybe + 146 trade day)
error is float divided by zero. (when I use lower 146 days.)
if I set length +146 days, then codes work well.
I think this code cause error:
data = data.apply(lambda x: np.log(x+1) - np.log(x[self.x_frames-1]+1))
log data was so small, so error occurred. (my opinion)
data is yahoo finance data. Thanx to read
When I # below code, then data got infinite.
data = data.apply(lambda x: np.log(x+1) - np.log(x[self.x_frames-1]+1))

Building a dataset with dataloader pytorch getting error cannot import name 'read_data_sets'

Loading data into dataset using pytorch dataloader.
Getting error cannot import name 'read_data_sets'
Tried searaching for results from similar issues.
If there is confusion about file instead of module and it can't find read_data_sets in your file How do i change to fix?
class MRDataset(data.Dataset):
def __init__(self, root_dir, task, plane, train=True, transform=None, weights=None):
super().__init__()
self.task = task
self.plane = plane
self.root_dir = root_dir
self.train = train
if self.train:
self.folder_path = self.root_dir + 'train/{0}/'.format(plane)
self.records = pd.read_csv(
self.root_dir + 'train-{0}.csv'.format(task), header=None, names=['id', 'label'])
else:
transform = None
self.folder_path = self.root_dir + 'valid/{0}/'.format(plane)
self.records = pd.read_csv(
self.root_dir + 'valid-{0}.csv'.format(task), header=None, names=['id', 'label'])
self.records['id'] = self.records['id'].map(
lambda i: '0' * (4 - len(str(i))) + str(i))
self.paths = [self.folder_path + filename +
'.npy' for filename in self.records['id'].tolist()]
self.labels = self.records['label'].tolist()
self.transform = transform
if weights is None:
pos = np.sum(self.labels)
neg = len(self.labels) - pos
self.weights = torch.FloatTensor([1, neg / pos])
else:
self.weights = torch.FloatTensor(weights)
def __len__(self):
return len(self.paths)
def __getitem__(self, index):
array = np.load(self.paths[index])
label = self.labels[index]
if label == 1:
label = torch.FloatTensor([[0, 1]])
elif label == 0:
label = torch.FloatTensor([[1, 0]])
if self.transform:
array = self.transform(array)
else:
array = np.stack((array,)*3, axis=1)
array = torch.FloatTensor(array)
# if label.item() == 1:
# weight = np.array([self.weights[1]])
# weight = torch.FloatTensor(weight)
# else:
# weight = np.array([self.weights[0]])
# weight = torch.FloatTensor(weight)
return array, label, self.weights
There is a model and train class to run this. Arguments specified in train.
Running the train should load data and run through model

Tensorflow : ValueError: Can't load save_path when it is None

import os
import tarfile
from six.moves import urllib
URL = 'http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz'
PATH = 'aclImdb'
def fetch_data(url = URL, path = PATH):
if not os.path.isdir(path):
os.makedirs(path)
file_path = os.path.join(oath, "aclImdb_v1.tar.gz")
urllib.request.urlretrieve(url, file_path)
file_gz = tarfile.open(file_path)
file_gz.extractall(path = path)
file_gz.close()
import pyprind # for progress visualisation
import pandas as pd
PATH = 'aclImdb'
labels = {'pos': 1, 'neg': 0} # int class labels for 'positive' and 'negative'
pbar = pyprind.ProgBar(50000) # initialise a progress bar with 50k iterations = no. of docs
df = pd.DataFrame()
# use nested for loops to iterate over 'train' & 'test' subdir
for s in ('test', 'train'):
for l in ('pos', 'neg'): # and read text files from 'pos' and 'neg' subdir
path = os.path.join(PATH, s, l)
for file in os.listdir(path):
# append to the df pandas DataFrame with an int class (post = 1, neg = 0)
with open(os.path.join(path, file), 'r', encoding = 'utf-8') as infile:
txt = infile.read()
df = df.append([[txt, labels[l]]], ignore_index = True)
pbar.update()
df.columns = ['review', 'sentiment']
import numpy as np
np. random.seed(0)
df = df.reindex(np.random.permutation(df.index))
df.to_csv('movie_data.csv', index = False, encoding = 'utf-8')
n_words = max(list(word_to_int.values())) + 1
df = pd.read_csv('movie_data.csv', encoding = 'utf-8')
df.head(3)
# Separate words and count each word's occurence
import pyprind # for progress visualisation
from collections import Counter
from string import punctuation
import re
counts = Counter() # collects the counts of occurence of each unique word
pbar = pyprind.ProgBar(len(df['review']),
title = 'Counting word occurences...') # progress bar
for i, review in enumerate(df['review']):
text = ''.join([c if c not in punctuation else ' '+c+' '
for c in review]).lower()
df.loc[i, 'review'] = text
pbar.update()
counts.update(text.split())
# Mapping each unique word to an int
word_counts = sorted(counts, key = counts.get, reverse = True)
print(word_counts[:5])
word_to_int = {word: ii for ii, word in enumerate(word_counts, 1)}
mapped_reviews = []
pbar = pyprind.ProgBar(len(df['review']),
title = 'Map movie reviews to integers...')
# Left-pad with zeros if the sequence length < 200
# Use 200 elements if the length > 200
sequence_length = 200
sequences = np.zeros((len(mapped_reviews), sequence_length), dtype = int)
for i, row in enumerate(mapped_reviews):
review_arr = np.array(row)
sequences[i, -len(row):] = review_arr[-sequence_length:]
# Split the dataset into training and test sets
X_train = sequences[:25000, :]
y_train = df.loc[:25000, 'sentiment'].values
X_test = sequences[25000:, :]
y_test = df.loc[25000:, 'sentiment'].values
# Define the mini-batches generator
np.random.seed(123)
def batch_gen(x, y = None, batch_size = 64):
n_batches = len(x) // batch_size
x = x[:n_batches * batch_size]
if y is not None:
y = y[:n_batches * batch_size]
for ii in range(0, len(x), batch_size):
if y is not None:
yield x[ii : ii + batch_size], y[ii : ii + batch_size]
else:
yield x[ii : ii + batch_size]
import tensorflow as tf
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' ## suppress the 3.5 warning if using TF 1.4
class SentimentRNN(object):
# Define __init__
def __init__(self,
n_words,
seq_len = 200,
lstm_size = 256,
num_layers = 1,
batch_size = 64,
learning_rate = 0.0001,
embed_size = 200):
self.n_words = n_words
self.seq_len = seq_len
self.lstm_size = lstm_size # no. of hidden units
self.num_layers = num_layers
self.batch_size = batch_size
self.learning_rate = learning_rate
self.embed_size = embed_size
self.g = tf.Graph()
with self.g.as_default():
tf.set_random_seed(123)
self.build()
self.saver = tf.train.Saver()
self.init_op = tf.global_variables_initializer()
# Define the build method
def build(self):
# Define the placeholders
tf_x = tf.placeholder(tf.int32,
shape = (self.batch_size, self.seq_len),
name = 'tf_x')
tf_y = tf.placeholder(tf.float32,
shape = (self.batch_size),
name = 'tf_y')
tf_keepprob = tf.placeholder(tf.float32,
name = 'tf_keepprob')
# Create the embedding layer
embedding = tf.Variable(
tf.random_uniform(
shape = (self.n_words, self.embed_size),
minval = -1,
maxval = 1),
name = 'embedding')
embed_x = tf.nn.embedding_lookup(embedding,
tf_x,
name = 'embed_x')
# Define LSTM cells and stack them
cells = tf.contrib.rnn.MultiRNNCell(
[tf.contrib.rnn.DropoutWrapper(
tf.contrib.rnn.BasicLSTMCell(num_units = self.lstm_size),
output_keep_prob = tf_keepprob)
for i in range(self.num_layers)])
# Define the initial state:
self.initial_state = cells.zero_state(
self.batch_size, tf.float32)
print(' << initial state >> ', self.initial_state)
# Put together components with tf.nn.dynamic_rnn
lstm_outputs, self.final_state = tf.nn.dynamic_rnn(
cell = cells,
inputs = embed_x,
initial_state = self.initial_state)
## lstm_outputs shape: [batch_size, max_time, cells.output_size]
print('\n << lstm_output >> ', lstm_outputs)
print('\n << final state >> ', self.final_state)
# Apply a full-connected layer on the RNN output
logits = tf.layers.dense(
inputs = lstm_outputs[:, -1],
units = 1, # dimensionality of the output space
activation = None,
name = 'logits')
# Remove dimensions of size 1 from the tensor shape
logits = tf.squeeze(input = logits,
name = 'logits_squeezed')
print ('\n << logits >> ', logits)
# If you want prob's
y_proba = tf.nn.sigmoid(logits, name = 'probabilities')
predictions = {'probabilities' : y_proba,
'labels' : tf.cast(tf.round(y_proba),
tf.int32,
name = 'labels')}
print('\n << predictions >> ', predictions)
# Define the cost function
cost = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(
labels = tf_y,
logits = logits),
name = 'cost')
# Define the optimiser
optimizer = tf.train.AdamOptimizer(self.learning_rate)
train_op = optimizer.minimize(cost, name = 'train_op')
# Define the train method
def train(self, X_train, y_train, num_epochs):
with tf.Session(graph = self.g) as sess:
sess.run(self.init_op)
iteration = 1
for epoch in range(num_epochs):
state = sess.run(self.initial_state)
for batch_x, batch_y in batch_gen(
X_train,
y_train,
batch_size = self.batch_size):
feed = {'tf_x:0' : batch_x,
'tf_y:0' : batch_y,
'tf_keepprob:0' : 0.5,
self.initial_state : state}
loss, _, state = sess.run(
['cost:0',
'train_op',
self.final_state],
feed_dict=feed)
if iteration % 20 == 0:
print("Epoch: %d/%d Iteration: %d "
"| Train loss: %.5f" % (
epoch + 1,
num_epochs,
iteration,
loss))
iteration += 1
if (epoch + 1) % 10 == 0:
self.saver.save(
sess,
"model/sentiment-%d.ckpt" % epoch)
# Define the predict method
def predict(self, X_data, return_proba=False):
preds = []
with tf.Session(graph = self.g) as sess:
self.saver.restore(
sess,
tf.train.latest_checkpoint('model/'))
test_state = sess.run(self.initial_state)
for ii, batch_x in enumerate(batch_gen(
x = X_data,
y = None,
batch_size = self.batch_size), 1):
feed = {'tf_x:0' : batch_x,
'tf_keepprob:0' : 1.0,
self.initial_state : test_state}
if return_proba:
pred, test_state = sess.run(
['probabilities:0', self.final_state],
feed_dict=feed)
else:
pred, test_state = sess.run(
['labels:0', self.final_state],
feed_dict=feed)
preds.append(pred)
return np.concatenate(preds)
for review in df['review']:
mapped_reviews.append([word_to_int[word] for word in review.split()])
pbar.update()
rnn = SentimentRNN(n_words = n_words,
seq_len = sequence_length,
embed_size = 256,
lstm_size = 128,
num_layers = 1,
batch_size = 100,
learning_rate = 0.001)
preds = rnn.predict(X_test)
y_true = y_test\[:len(preds)\]
print('Test accuracy... %.3f' % (np.sum(preds == y_true) / len(y_true)))][1]
Create an object of the SentimentRNN class with the following parameters:
n_words = n_words, seq_len = sequence_length, embed_size = 256, lstm_size = 128, num_layers = 1, batch_size = 100, learning_rate = 0.001.
Since we have a relatively small dataset, the number of layers = 1 may generalise better
enter image description here
ValueError Traceback (most recent call last)
<ipython-input-23-a3cfe03a9a49> in <module>()
----> 1 preds = rnn.predict(X_test)
2 y_true = y_test[:len(preds)]
3 print('Test accuracy... %.3f' % (np.sum(preds == y_true) / len(y_true)))
<ipython-input-12-d83ee67c43b6> in predict(self, X_data, return_proba)
173 self.saver.restore(
174 sess,
--> 175 tf.train.latest_checkpoint('model/'))
176 test_state = sess.run(self.initial_state)
177
/usr/local/anaconda/lib/python3.6/site-packages/tensorflow/python/training/saver.py in restore(self, sess, save_path)
1680 return
1681 if save_path is None:
-> 1682 raise ValueError("Can't load save_path when it is None.")
1683 logging.info("Restoring parameters from %s", save_path)
1684 if context.in_graph_mode():
ValueError: Can't load save_path when it is None.
The error just means tf.train.latest_checkpoint didn't find anything. It returns None, then the Saver complains because it was passed None. So there's no checkpoint in that directory.

tensorflow variables inside class differing from the one outside

I am trying to solve a ANN model using Tensorflow. At the moment, I am able to run the program as a long string of text. Now however, I would like to convert my code to something that is easier to use. So I converted my code to a class. Here is what I did. (basically copied the entire set of code to a class.
import os
import tensorflow as tf
class NNmodel:
def __init__(self,
layers, inpShape, outShape,
features,
learning_rate=0.1, nSteps = 100,
saveFolder='models'):
self.layers = layers
self.features = features
self.learning_rate = learning_rate
self.saveFolder = saveFolder
self.nSteps = 100
self.d = tf.placeholder(shape = inpShape, dtype = tf.float32, name='d') # input layer
self.dOut = tf.placeholder(shape = outShape, dtype = tf.float32, name='dOut') # output layer
self.weights = []
self.biases = []
self.compute = [self.d]
layerSizes = [self.features] + [l['size'] for l in self.layers]
for i, (v1, v2) in enumerate(zip(layerSizes, layerSizes[1:])):
self.weights.append(
tf.Variable(np.random.randn(v1, v2)*0.1, dtype = tf.float32, name='W{}'.format(i)))
self.biases.append(
tf.Variable(np.zeros((1,1)), dtype = tf.float32, name='b{}'.format(i)) )
self.compute.append( tf.matmul(
self.compute[-1], self.weights[i]) + self.biases[i] )
if self.layers[i]['activation'] == 'tanh':
self.compute.append( tf.tanh( self.compute[-1] ) )
if self.layers[i]['activation'] == 'relu':
self.compute.append( tf.nn.relu( self.compute[-1] ) )
if self.layers[i]['activation'] == 'sigmoid':
self.compute.append( tf.sigmoid ( self.compute[-1] ) )
self.result = self.compute[-1]
self.delta = self.dOut - self.result
self.cost = tf.reduce_mean(self.delta**2)
self.optimizer = tf.train.AdamOptimizer(
learning_rate = self.learning_rate).minimize(self.cost)
return
def findVal(self, func, inpDict, restorePt=None):
saver = tf.train.Saver()
sess = tf.Session()
init = tf.global_variables_initializer()
sess.run(init)
if restorePt is not None:
try:
saver.restore(sess, tf.train.latest_checkpoint(restorePt) )
print('Session restored')
except Exception as e:
print('Unable to restore the session ...')
return None
else:
print('Warning, no restore point selected ...')
result = sess.run(func, feed_dict = inpDict)
sess.close()
return result
def optTF(self, inpDict, printSteps=50, modelFile=None):
cost = []
saver = tf.train.Saver()
sess = tf.Session()
init = tf.global_variables_initializer()
sess.run(init)
print('x'*100)
for i in range(self.nSteps):
# First run the optimizer ...
sess.run(self.optimizer, feed_dict = inpDict)
# Save all the data you want to save
c = sess.run( self.cost, feed_dict = inpDict)
cost.append(c)
if (i%printSteps) == 0:
print('{:5d}'.format(i))
result = self.run(self.result, feed_dict = inpDict)
if modelFile is not None:
path = saver.save(sess, os.path.join(
self.saveFolder, modelFile))
print('Model saved in: {}'.format(path))
else:
print('Warning! model not saved')
sess.close()
return cost, result
When I use this model, I see that there seems to be a problem:
N = 500
features = 2
nSteps = 1000
X = [ (np.random.random(N))*np.random.randint(1000, 2000) for i in range(features)]
X = np.array([np.random.random(N), np.random.random(N)])
data = [X.T, X[0].reshape(-1, 1)]
layers = [
{'name':'6', 'size': 10, 'activation':'tanh'},
{'name':'7', 'size': 1, 'activation':'linear'},
]
m1 = NNmodel(layers, inpShape=np.shape(data[0]), outShape = np.shape(data[1]),
features=features,
learning_rate=0.1, nSteps = 100,
saveFolder='models1')
d = tf.placeholder(shape = np.shape(data[0]), dtype = tf.float32, name='d_4')
dOut = tf.placeholder(shape = np.shape(data[1]), dtype = tf.float32, name='dOut')
m1.findVal(m1.result, {d: data[0], dOut:data[1]})
Now it appears that there is a mismatch between the placeholders that I am using d and dOut that I provide form outside, and the ones that are already present within the model self.d and self.dOut. How do I solve this problem?
Why not to just use the placeholders declared within the model?
m1.findVal(m1.result, {m1.d: data[0], m1.dOut:data[1]})

Resources