I am starting to work with Neuralnetworks using Keras. I try to adapt the model (UNet-like architecture) given by Sim, Oh, Kim, Jung in "Optimal Transport driven CycleGAN for Unsupervised Learning in Inverse Problems" (Fig. 10).
def def_generator(image_shape=(256,256,3)):
init= RandomNormal(stddev=0.02)
#Start 1st Block
in_image = Input(shape=image_shape)
g1=Conv2D(64,(3,3))(in_image)
g1=InstanceNormalization(axis=-1)(g1)
g1=LeakyReLU(alpha=0.2)(g1)
g1=Conv2D(64,(3,3))(g1)
g1=InstanceNormalization(axis=-1)(g1)
g1=LeakyReLU(alpha=0.2)(g1)
#End of 1st Block
#Start of 2nd Block
g2=MaxPool2D()(g1)
g2=Conv2D(128,(3,3))(g2)
g2=InstanceNormalization(axis=-1)(g2)
g2=LeakyReLU(alpha=0.2)(g2)
g2=Conv2D(128,(3,3))(g2)
g2=InstanceNormalization(axis=-1)(g2)
g2=LeakyReLU(alpha=0.2)(g2)
#End of 2nd Block
#Start of 3rd Block
g3=MaxPool2D()(g2)
g3=Conv2D(256,(3,3))(g3)
g3=InstanceNormalization(axis=-1)(g3)
g3=LeakyReLU(alpha=0.2)(g3)
g3=Conv2D(256,(3,3))(g3)
g3=InstanceNormalization(axis=-1)(g3)
g3=LeakyReLU(alpha=0.2)(g3)
#End of 3rd Block
#Start of 4th block
g4=MaxPool2D()(g3)
g4=Conv2D(512,(3,3))(g4)
g4=InstanceNormalization(axis=-1)(g4)
g4=LeakyReLU(alpha=0.2)(g4)
g4=Conv2D(512,(3,3))(g4)
g4=InstanceNormalization(axis=-1)(g4)
g4=LeakyReLU(alpha=0.2)(g4)
g4=Conv2D(256,(3,3))(g4)
g4=InstanceNormalization(axis=-1)(g4)
g4=LeakyReLU(alpha=0.2)(g4)
g4=Conv2DTranspose(256,(2,2),strides=(4,4),output_padding=1)(g4)
#End of 4th Block
#Start of 5th Block
g5input=Concatenate()([g4,g3])
g5=Conv2D(256,(3,3))(g5input)
g5=InstanceNormalization(axis=-1)(g5)
g5=LeakyReLU(alpha=0.2)(g5)
g5=Conv2D(256,(3,3))(g5)
g5=InstanceNormalization(axis=-1)(g5)
g5=LeakyReLU(alpha=0.2)(g5)
g5=Conv2DTranspose(128,(2,2),strides=(3,3), padding='same', output_padding=0)(g5)
#End of 5th Block
#Start of 6th block
g6input=Concatenate()([g5,g2])
g6=Conv2D(128,(2,2))(g6input)
g6=InstanceNormalization(axis=-1)(g6)
g6=LeakyReLU(alpha=0.2)(g6)
g6=Conv2D(128,(2,2))(g6)
g6=InstanceNormalization(axis=-1)(g6)
g6=LeakyReLU(alpha=0.2)(g6)
g6=Conv2DTranspose(64,(2,2),strides=(2,2), padding='valid', output_padding=1)(g6)
#End of 6th Block
#Start of 7th block
g7input=Concatenate()([g6,g1])
g7=Conv2D(64,(2,2))(g7input)
g7=InstanceNormalization(axis=-1)(g7)
g7=LeakyReLU(alpha=0.2)(g7)
g7=Conv2D(64,(2,2))(g7)
g7=InstanceNormalization(axis=-1)(g7)
g7=LeakyReLU(alpha=0.2)(g7)
g7=Conv2DTranspose(1,(1,1))(g7)
model=Model(in_image, g5)
model.compile(loss='mse', optimizer=Adam(lr=2e-4,beta_1=0.5), loss_weights=[0.5], metrics=['accuracy'])
return model
g=def_generator((120,120,1))
print(g.summary())
I run always in the problem that the dimensions of the layers which should be concatenated are not compatible.
I understand that this issue is resulting from the MaxPooling+Conv2d steps before.
I am now wondering if there is a trick/strategy to avoid/reduce this issue?
Any help will be appreciated.
Best wishes
Michael
the problem is very simple, you are concatenating block with layers with different size, this is happening because you are trying to run the network on images that are NOT POWER OF 2 size, when you do the max pooling of an image that is not divisible for 2 you lose a pixel (243x243 -> 121x121) and when you double with the traspose you get a different size (121x121 -> 242x242) and the concatenation doesnt work because 242 is different to 243, the images are of different size (at least this is what i think, you should have shared the error).
This means that when an image reaches a maxpooling layer it needs to have an edge divisible for 2.
so, solution:
having 4 blocks means that the images need to be AT LEAST divisible for 16, otherwise it will not work
Related
I'm a student teaching myself Drake, specifically pydrake with Dr. Russ Tedrake's excellent Underactuated Robotics course. I am trying to write a combined energy shaping and lqr controller for keeping a cartpole system balanced upright. I based the diagram on the cartpole example found in Chapter 3 of Underactuated Robotics [http://underactuated.mit.edu/acrobot.html], and the SwingUpAndBalanceController on Chapter 2: [http://underactuated.mit.edu/pend.html].
I have found that due to my use of the cart_pole.sdf model I have to create an abstract input port due receive FramePoseVector from the cart_pole.get_output_port(0). From there I know that I have to create a control signal output of type BasicVector to feed into a Saturation block before feeding into the cartpole's actuation port.
The problem I'm encountering right now is that I'm not sure how to get the system's current state data in the DeclareVectorOutputPort's callback function. I was under the assumption I would use the LeafContext parameter in the callback function, OutputControlSignal, obtaining the BasicVector continuous state vector. However, this resulting vector, x_bar is always NaN. Out of desperation (and testing to make sure the rest of my program worked) I set x_bar to the controller's initialization cart_pole_context and have found that the simulation runs with a control signal of 0.0 (as expected). I can also set output to 100 and the cartpole simulation just flies off into endless space (as expected).
TL;DR: What is the proper way to obtain the continuous state vector in a custom controller extending LeafSystem with a DeclareVectorOutputPort?
Thank you for any help! I really appreciate it :) I've been teaching myself so it's been a little arduous haha.
# Combined Energy Shaping (SwingUp) and LQR (Balance) Controller
# with a simple state machine
class SwingUpAndBalanceController(LeafSystem):
def __init__(self, cart_pole, cart_pole_context, input_i, ouput_i, Q, R, x_star):
LeafSystem.__init__(self)
self.DeclareAbstractInputPort("state_input", AbstractValue.Make(FramePoseVector()))
self.DeclareVectorOutputPort("control_signal", BasicVector(1),
self.OutputControlSignal)
(self.K, self.S) = BalancingLQRCtrlr(cart_pole, cart_pole_context,
input_i, ouput_i, Q, R, x_star).get_LQR_matrices()
(self.A, self.B, self.C, self.D) = BalancingLQRCtrlr(cart_pole, cart_pole_context,
input_i, ouput_i,
Q, R, x_star).get_lin_matrices()
self.energy_shaping = EnergyShapingCtrlr(cart_pole, x_star)
self.energy_shaping_context = self.energy_shaping.CreateDefaultContext()
self.cart_pole_context = cart_pole_context
def OutputControlSignal(self, context, output):
#xbar = copy(self.cart_pole_context.get_continuous_state_vector())
xbar = copy(context.get_continuous_state_vector())
xbar_ = np.array([xbar[0], xbar[1], xbar[2], xbar[3]])
xbar_[1] = wrap_to(xbar_[1], 0, 2.0*np.pi) - np.pi
# If x'Sx <= 2, then use LQR ctrlr. Cost-to-go J_star = x^T * S * x
threshold = np.array([2.0])
if (xbar_.dot(self.S.dot(xbar_)) < 2.0):
#output[:] = -self.K.dot(xbar_) # u = -Kx
output.set_value(-self.K.dot(xbar_))
else:
self.energy_shaping.get_input_port(0).FixValue(self.energy_shaping_context,
self.cart_pole_context.get_continuous_state_vector())
output_val = self.energy_shaping.get_output_port(0).Eval(self.energy_shaping_context)
output.set_value(output_val)
print(output)
Here are two things that might help:
If you want to get the state of the cart-pole from MultibodyPlant, you probably want to be connecting to the continuous_state output port, which gives you a normal vector instead of the abstract-type FramePoseVector. In that case, your call to get_input_port().Eval(context) should work just fine.
If you do really want to read the FramePoseVector, then you have to evaluate the input port slightly differently. You can find an example of that here.
I was implementing a conv block in pytorch with activation function(prelu). I used Kaiming initilization to initialize all my weights and set all the bias to zero. However as I tested these blocks (by stacking 100 such conv and activation blocks on top of each other), I noticed that the output I am getting values of the order of 10^(-10). Is this normal, considering I am stacking upto 100 layers. Adding a small bias to each layer fixes the problem. But in Kaiming initialization the biases are supposed to be zero.
Here is the conv block code
from collections import Iterable
def convBlock(
input_channels, output_channels, kernel_size=3, padding=None, activation="prelu"
):
"""
Initializes a conv block using Kaiming Initialization
"""
padding_par = 0
if padding == "same":
padding_par = same_padding(kernel_size)
conv = nn.Conv2d(input_channels, output_channels, kernel_size, padding=padding_par)
relu_negative_slope = 0.25
act = None
if activation == "prelu" or activation == "leaky_relu":
nn.init.kaiming_normal_(conv.weight, a=relu_negative_slope, mode="fan_in")
if activation == "prelu":
act = nn.PReLU(init=relu_negative_slope)
else:
act = nn.LeakyReLU(negative_slope=relu_negative_slope)
if activation == "relu":
nn.init.kaiming_normal_(conv.weight, nonlinearity="relu")
act = nn.ReLU()
nn.init.constant_(conv.bias.data, 0)
block = nn.Sequential(conv, act)
return block
def flatten(lis):
for item in lis:
if isinstance(item, Iterable) and not isinstance(item, str):
for x in flatten(item):
yield x
else:
yield item
def Sequential(args):
flattened_args = list(flatten(args))
return nn.Sequential(*flattened_args)
This is the test Code
ls=[]
for i in range(100):
ls.append(convBlock(3,3,3,"same"))
model=Sequential(ls)
test=np.ones((1,3,5,5))
model(torch.Tensor(test))
And the output I am getting is
tensor([[[[-1.7771e-10, -3.5088e-10, 5.9369e-09, 4.2668e-09, 9.8803e-10],
[ 1.8657e-09, -4.0271e-10, 3.1189e-09, 1.5117e-09, 6.6546e-09],
[ 2.4237e-09, -6.2249e-10, -5.7327e-10, 4.2867e-09, 6.0034e-09],
[-1.8757e-10, 5.5446e-09, 1.7641e-09, 5.7018e-09, 6.4347e-09],
[ 1.2352e-09, -3.4732e-10, 4.1553e-10, -1.2996e-09, 3.8971e-09]],
[[ 2.6607e-09, 1.7756e-09, -1.0923e-09, -1.4272e-09, -1.1840e-09],
[ 2.0668e-10, -1.8130e-09, -2.3864e-09, -1.7061e-09, -1.7147e-10],
[-6.7161e-10, -1.3440e-09, -6.3196e-10, -8.7677e-10, -1.4851e-09],
[ 3.1475e-09, -1.6574e-09, -3.4180e-09, -3.5224e-09, -2.6642e-09],
[-1.9703e-09, -3.2277e-09, -2.4733e-09, -2.3707e-09, -8.7598e-10]],
[[ 3.5573e-09, 7.8113e-09, 6.8232e-09, 1.2285e-09, -9.3973e-10],
[ 6.6368e-09, 8.2877e-09, 9.2108e-10, 9.7531e-10, 7.0011e-10],
[ 6.6954e-09, 9.1019e-09, 1.5128e-08, 3.3151e-09, 2.1899e-10],
[ 1.2152e-08, 7.7002e-09, 1.6406e-08, 1.4948e-08, -6.0882e-10],
[ 6.9930e-09, 7.3222e-09, -7.4308e-10, 5.2505e-09, 3.4365e-09]]]],
grad_fn=<PreluBackward>)
Amazing question (and welcome to StackOverflow)! Research paper for quick reference.
TLDR
Try wider networks (64 channels)
Add Batch Normalization after activation (or even before, shouldn't make much difference)
Add residual connections (shouldn't improve much over batch norm, last resort)
Please check this out in this order and give a comment what (and if) any of that worked in your case (as I'm also curious).
Things you do differently
Your neural network is very deep, yet very narrow (81 parameters per layer only!)
Due to above, one cannot reliably create those weights from normal distribution as the sample is just too small.
Try wider networks, 64 channels or more
You are trying much deeper network than they did
Section: Comparison Experiments
We conducted comparisons on a deep but efficient model with 14 weight
layers (actually 22 was also tested in comparison with Xavier)
That was due to date of release of this paper (2015) and hardware limitations "back in the days" (let's say)
Is this normal?
Approach itself is quite strange with layers of this depth, at least currently;
each conv block is usually followed by activation like ReLU and Batch Normalization (which normalizes signal and helps with exploding/vanishing signals)
usually networks of this depth (even of depth half of what you've got) use also residual connections (though this is not directly linked to vanishing/small signal, more connected to degradation problem of even deep networks, like 1000 layers)
Is there any way to detect the highest peaks using a python library without setting any parameter?. I'm developing a user interface and I want the algorithm to be able to detect highest peaks automatically...
I want it to be able to detect these peaks in picture below:
graph here
Data looks like this:
8.60291e-07
-1.5491e-06
5.64568e-07
-9.51195e-07
1.07203e-06
4.6521e-07
6.43967e-07
-9.86092e-07
-9.82323e-07
6.38977e-07
-1.93884e-06
-2.98309e-08
1.33543e-06
1.05064e-06
1.17332e-06
-1.53549e-07
-8.9357e-07
1.59176e-06
-2.17331e-06
1.46756e-06
5.63301e-07
-8.77556e-07
7.47681e-09
-8.30101e-07
-3.6647e-07
5.27046e-07
-1.94983e-06
1.89018e-07
1.22533e-06
8.00735e-07
-8.51166e-07
1.13437e-06
-2.75787e-07
1.79601e-06
-1.67875e-06
1.13529e-06
-1.29865e-06
9.9688e-07
-9.34486e-07
8.89931e-07
-3.88634e-07
1.15124e-06
-4.23569e-07
-1.8029e-07
1.20537e-07
4.10736e-07
-9.99077e-07
-3.62984e-07
2.97916e-06
-1.95828e-06
-1.07398e-06
2.422e-06
-6.33202e-07
-1.36953e-06
1.6694e-06
-4.71764e-07
3.98849e-07
-1.0071e-06
-9.72984e-07
8.13553e-07
2.64193e-06
-3.12365e-06
1.34049e-06
-1.30419e-06
1.48369e-07
1.26033e-06
-2.59872e-07
4.28284e-07
-6.44356e-07
2.99934e-07
8.34335e-07
3.53226e-07
-7.08252e-07
4.1243e-07
2.41525e-06
-8.92159e-07
8.82339e-08
4.31945e-06
3.75152e-06
1.091e-06
3.8204e-06
-1.21356e-06
3.35564e-06
-1.06234e-06
-5.99808e-07
2.18155e-06
5.90652e-07
-1.36728e-06
-4.97017e-07
-7.77283e-08
8.68263e-07
4.37645e-07
-1.26514e-06
2.26413e-06
-8.52966e-07
-7.35596e-07
4.11911e-07
1.7585e-06
-inf
1.10779e-08
-1.49507e-06
9.87305e-07
-3.85296e-06
4.31265e-06
-9.89227e-07
-1.33537e-06
4.1713e-07
1.89362e-07
3.21968e-07
6.80237e-08
2.31636e-07
-2.98523e-07
7.99133e-07
7.36305e-07
6.39862e-07
-1.11932e-06
-1.57262e-06
1.86305e-06
-3.63716e-07
3.83865e-07
-5.23293e-07
1.31812e-06
-1.23608e-06
2.54684e-06
-3.99796e-06
2.90441e-06
-5.20203e-07
1.36295e-06
-1.89317e-06
1.22366e-06
-1.10373e-06
2.71276e-06
9.48181e-07
7.70881e-06
5.17066e-06
6.21254e-06
1.3513e-05
1.47878e-05
8.78543e-06
1.61819e-05
1.68438e-05
1.16082e-05
5.74059e-06
4.92458e-06
1.11884e-06
-1.07419e-06
-1.28517e-06
-2.70949e-06
1.65662e-06
1.42964e-06
3.40604e-06
-5.82825e-07
1.98288e-06
1.42819e-06
1.65517e-06
4.42749e-07
-1.95609e-06
-2.1756e-07
1.69164e-06
8.7204e-08
-5.35324e-07
7.43546e-07
-1.08687e-06
2.07289e-06
2.18529e-06
-2.8161e-06
1.88821e-06
4.07272e-07
1.063e-06
8.47244e-07
1.53879e-06
-9.0799e-07
-1.26709e-07
2.40044e-06
-9.48166e-07
1.41788e-06
3.67615e-07
-1.29199e-06
3.868e-06
9.54654e-06
2.51951e-05
2.2769e-05
7.21716e-06
1.36545e-06
-1.32681e-06
-3.09641e-06
4.90417e-07
2.99335e-06
1.578e-06
6.0025e-07
2.90656e-06
-2.08258e-06
-1.54214e-06
2.19757e-07
3.74982e-06
-1.76944e-06
2.15018e-06
-1.01935e-06
4.37469e-07
1.39078e-06
6.39587e-07
-1.7807e-06
-6.16455e-09
1.61557e-06
1.59644e-06
-2.35217e-06
5.29449e-07
1.9169e-06
-7.54822e-07
2.00342e-06
-3.28452e-06
3.91663e-06
1.66016e-08
-2.65897e-06
-1.4064e-06
4.67987e-07
1.67786e-06
4.69543e-07
-8.90106e-07
-1.4584e-06
1.37915e-06
1.98483e-06
-2.3735e-06
4.45618e-07
1.91504e-06
1.09653e-06
-8.00873e-07
1.32321e-06
2.04846e-06
-1.50656e-06
7.23816e-07
2.06049e-06
-2.43918e-06
1.64417e-06
2.65411e-07
-2.66107e-06
-8.01788e-07
2.05121e-06
-1.74988e-06
1.83594e-06
-8.14026e-07
-2.69342e-06
1.81152e-06
1.11664e-07
-4.21863e-06
-7.20551e-06
-5.92407e-07
-1.44629e-06
-2.08136e-06
2.86105e-06
3.77911e-06
-1.91898e-06
1.41742e-06
2.67914e-07
-8.55835e-07
-9.8584e-07
-2.74115e-06
3.39044e-06
1.39639e-06
-2.4964e-06
8.2486e-07
2.02432e-06
1.65793e-06
-1.43094e-06
-3.36807e-06
-8.96515e-07
5.31323e-06
-8.27209e-07
-1.39221e-06
-3.3754e-06
2.12372e-06
3.08218e-06
-1.42947e-06
-2.36777e-06
3.86218e-06
2.29327e-06
-3.3941e-06
-1.67291e-06
2.63828e-06
2.21008e-07
7.07794e-07
1.8172e-06
-2.00082e-06
1.80664e-06
6.69739e-07
-3.95395e-06
1.92148e-06
-1.07187e-06
-4.04938e-07
-1.76553e-06
2.7099e-06
1.30768e-06
1.41812e-06
-1.55518e-07
-3.78302e-06
4.00137e-06
-8.38623e-07
4.54651e-07
1.00027e-06
1.32196e-06
-2.62717e-06
1.67865e-06
-6.99249e-07
2.8837e-06
-1.00516e-06
-3.68011e-06
1.61847e-06
1.90887e-06
1.59641e-06
4.16779e-07
-1.35245e-06
1.65717e-06
-2.92667e-06
3.6203e-07
2.53528e-06
-2.0578e-07
-3.41919e-07
-1.42154e-06
-2.33322e-06
3.07175e-06
-2.69165e-08
-8.21045e-07
2.3175e-06
-7.22992e-07
1.49069e-06
8.75488e-07
-2.02676e-06
-2.81158e-07
3.6004e-06
-3.94708e-06
4.72983e-06
-1.38873e-06
-6.92139e-08
-1.4678e-06
1.04251e-06
-2.06625e-06
3.10406e-06
-8.13873e-07
7.23694e-07
-9.78912e-07
-8.65967e-07
7.37335e-07
1.52563e-06
-2.33591e-06
1.78265e-06
9.58435e-07
-5.22064e-07
-2.29736e-07
-4.26996e-06
-6.61411e-06
1.14789e-06
-4.32697e-06
-5.32779e-06
2.12241e-06
-1.40726e-06
1.76086e-07
-3.77194e-06
-2.71326e-06
-9.49402e-08
1.70807e-07
-2.495e-06
4.22324e-06
-3.62476e-06
-9.56055e-07
7.16583e-07
3.01447e-06
-1.41229e-06
-1.67694e-06
7.61627e-07
3.55881e-06
2.31015e-06
-9.50378e-07
4.45251e-08
-1.94791e-06
2.27081e-06
-3.34717e-06
3.05688e-06
4.57062e-07
3.87326e-06
-2.39215e-06
-3.52682e-06
-2.05212e-06
5.26495e-06
-3.28613e-07
-5.76569e-07
-7.46338e-07
5.98795e-06
8.80493e-07
-4.82965e-06
2.56839e-06
-1.58792e-06
-2.2294e-06
1.83841e-06
2.65482e-06
-3.10474e-06
-3.46741e-07
2.45557e-06
2.01328e-06
-3.92606e-06
inf
-8.11737e-07
5.72174e-07
1.57245e-06
8.02612e-09
-2.901e-06
1.22079e-06
-6.31714e-07
3.06241e-06
1.20059e-06
-1.80344e-06
4.90784e-07
3.74243e-06
-2.94342e-07
-3.45764e-08
-3.42099e-06
-1.43695e-06
5.91064e-07
3.47308e-06
3.78232e-06
4.01093e-07
-1.58435e-06
-3.47375e-06
1.34943e-06
1.11768e-06
1.95212e-06
-8.28033e-07
1.53705e-06
6.38031e-07
-1.84702e-06
1.34689e-06
-6.98669e-07
1.81653e-06
-2.42355e-06
-1.35257e-06
3.04367e-06
-1.21976e-06
1.61896e-06
-2.69528e-06
1.84601e-06
6.45447e-08
-4.94263e-07
3.47568e-06
-2.00531e-06
3.56693e-06
-3.19446e-06
2.72141e-06
-1.39059e-06
2.20032e-06
-1.76819e-06
2.32727e-07
-3.47382e-07
2.11823e-07
-5.22614e-07
2.69846e-06
-1.47983e-06
2.14554e-06
-6.27594e-07
-8.8501e-10
7.89124e-07
-2.8653e-07
8.30902e-07
-2.12857e-06
-1.90887e-07
1.07593e-06
1.40781e-06
2.41641e-06
-4.52689e-06
2.37207e-06
-2.19479e-06
1.65131e-06
1.2706e-06
-2.18387e-06
-1.72821e-07
5.41687e-07
7.2879e-07
7.56927e-07
1.57739e-06
-3.79395e-07
-1.02887e-06
-1.20987e-06
1.43066e-06
8.96301e-08
5.09766e-07
-2.8812e-06
-2.35944e-06
2.25912e-06
-2.78967e-06
-4.69913e-06
1.60822e-06
6.9342e-07
4.6225e-07
-1.33276e-06
-3.59033e-06
1.11206e-06
1.83521e-06
2.39163e-06
2.3468e-08
5.91431e-07
-8.80249e-07
-2.77405e-08
-1.13184e-06
-1.28036e-06
1.66229e-06
2.81784e-06
-2.97589e-06
8.73413e-08
1.06439e-06
2.39075e-06
-2.76974e-06
1.20862e-06
-5.12817e-07
-5.19104e-07
4.51324e-07
-4.7168e-07
2.35608e-06
5.46906e-07
-1.66748e-06
5.85236e-07
6.42944e-07
2.43164e-07
4.01031e-07
-1.93646e-06
2.07416e-06
-1.16116e-06
4.27155e-07
5.2951e-07
9.09149e-07
-8.71887e-08
-1.5564e-09
1.07266e-06
-9.49402e-08
2.04016e-06
-6.38123e-07
-1.94241e-06
-5.17294e-06
-2.18622e-06
-8.26703e-06
2.54364e-06
4.32614e-06
8.3847e-07
-2.85309e-06
2.72345e-06
-3.42752e-06
-1.36871e-07
2.23346e-06
5.26825e-07
1.3566e-06
-2.17111e-06
2.1463e-07
2.06479e-06
1.76929e-06
-1.2655e-06
-1.3797e-06
3.10706e-06
-4.72189e-06
4.38138e-06
6.41815e-07
-3.25623e-08
-4.93707e-06
5.05743e-06
5.17578e-07
-5.30524e-06
3.62463e-06
5.68909e-07
1.16226e-06
1.10843e-06
-5.00854e-07
9.48761e-07
-2.18701e-06
-3.57635e-07
4.26709e-06
-1.50836e-06
-5.84412e-06
3.5054e-06
3.94019e-06
-4.7623e-06
2.05856e-06
-2.22992e-07
1.64969e-06
2.64694e-06
-8.49487e-07
-3.63562e-06
1.0386e-06
1.69461e-06
-2.05798e-06
3.60349e-06
3.42651e-07
-1.46686e-06
1.19949e-06
-1.60519e-06
2.37793e-07
6.12366e-07
-1.54669e-06
1.43668e-06
1.87009e-06
-2.22626e-06
2.15155e-06
-3.10571e-06
2.05188e-06
-4.40002e-07
2.06683e-06
-1.11362e-06
5.96924e-07
-2.64471e-06
2.4892e-06
1.13083e-06
-3.23181e-07
5.10651e-07
2.73499e-07
-1.24899e-06
1.40564e-06
-9.3158e-07
1.45947e-06
3.70544e-07
-1.62628e-06
-1.70215e-06
1.72098e-06
8.19031e-07
-5.57709e-07
1.10107e-06
-2.81845e-06
1.57654e-07
3.30716e-06
-9.75403e-07
1.73126e-07
1.30447e-06
7.64771e-08
-6.65344e-07
-1.4346e-06
5.03171e-06
-2.84576e-06
2.3212e-06
-2.73373e-06
2.16675e-08
2.24026e-06
-4.11682e-08
-3.36642e-06
1.78775e-06
1.28174e-08
-9.32068e-07
2.97177e-06
-1.05338e-06
9.42505e-07
2.02362e-07
-1.81326e-06
2.16995e-06
2.83722e-07
-1.2648e-06
9.21814e-07
-8.9447e-07
-1.61597e-06
3.5036e-06
-6.79626e-08
1.52823e-06
-2.98682e-06
5.57404e-07
9.5166e-07
7.10419e-07
-1.28528e-06
-3.76038e-07
-1.03845e-06
2.96631e-06
-1.18356e-06
-2.77313e-07
3.24149e-06
-1.85455e-06
-1.27747e-07
3.6264e-07
4.66431e-07
-1.54443e-06
1.38437e-06
-1.53119e-06
7.4231e-07
-1.2388e-06
1.99774e-06
1.15799e-06
1.39478e-06
-2.93527e-06
-2.03012e-06
2.46667e-06
2.16751e-06
-2.50354e-06
3.95905e-07
5.74371e-07
1.33575e-07
-3.98315e-07
4.93927e-07
-5.23987e-07
-1.74713e-07
6.49384e-07
-7.16766e-07
2.35733e-06
-4.91333e-08
-1.88138e-06
1.74722e-06
4.03503e-07
3.5965e-07
1.44836e-07]
The task you are describing could be treated like anomaly/outlier detection.
One possible solution is to use a Z-score transformation and treat every value with a z score above a certain threshold as an outlier. Because there is no clear definition of an outlier it won't be able to detect such peaks without setting any parameters (threshold).
One possible solution could be:
import numpy as np
def detect_outliers(data):
outliers = []
d_mean = np.mean(data)
d_std = np.std(data)
threshold = 3 # this defines what you would consider a peak (outlier)
for point in data:
z_score = (point - d_mean)/d_std
if np.abs(z_score) > threshold:
outliers.append(point)
return outliers
# create normal data
data = np.random.normal(size=100)
# create outliers
outliers = np.random.normal(100, size=3)
# combine normal data and outliers
full_data = data.tolist() + outliers.tolist()
# print outliers
print(detect_outliers(full_data))
If you only want to detect peaks, remove the np.abs function call from the code.
This code snippet is based on a Medium Post, which also provides another way of detecting outliers.
I am trying to learn linearK estimates on a small linnet object from the CRC spatstat book (chapter 17) and when I use the linearK function, spatstat throws an error. I have documented the process in the comments in the r code below. The error is as below.
Error in seq.default(from = 0, to = right, length.out = npos + 1L) : 'to' cannot be NA, NaN or infinite
I do not understand how to resolve this. I am following this process:
# I have data of points for each data of the week
# d1 is district 1 of the city.
# I did the step below otherwise it was giving me tbl class
d1_data=lapply(split(d1, d1$openDatefactor),as.data.frame)
# I previously create a linnet and divided it into districts of the city
d1_linnet = districts_linnet[["d1"]]
# I create point pattern for each day
d1_ppp = lapply(d1_data, function(x) as.ppp(x, W=Window(d1_linnet)))
plot(d1_ppp[[1]], which.marks="type")
# I am then converting the point pattern to a point pattern on linear network
d1_lpp <- as.lpp(d1_ppp[[1]], L=d1_linnet, W=Window(d1_linnet))
d1_lpp
Point pattern on linear network
3 points
15 columns of marks: ‘status’, ‘number_of_’, ‘zip’, ‘ward’,
‘police_dis’, ‘community_’, ‘type’, ‘days’, ‘NAME’,
‘DISTRICT’, ‘openDatefactor’, ‘OpenDate’, ‘coseDatefactor’,
‘closeDate’ and ‘instance’
Linear network with 4286 vertices and 6183 lines
Enclosing window: polygonal boundary
enclosing rectangle: [441140.9, 448217.7] x [4640080, 4652557] units
# the errors start from plotting this lpp object
plot(d1_lpp)
"show.all" is not a graphical parameter
Show Traceback
Error in plot.window(...) : need finite 'xlim' values
coords(d1_lpp)
x y seg tp
441649.2 4649853 5426 0.5774863
445716.9 4648692 5250 0.5435492
444724.6 4646320 677 0.9189631
3 rows
And then consequently, I also get error on linearK(d1_lpp)
Error in seq.default(from = 0, to = right, length.out = npos + 1L) : 'to' cannot be NA, NaN or infinite
I feel lpp object has the problem, but I find it hard to interpret the errors and how to resolve them. Could someone please guide me?
Thanks
I can confirm there is a bug in plot.lpp when trying to plot the marked point pattern on the linear network. That will hopefully be fixed soon. You can plot the unmarked point pattern using
plot(unmark(d1_lpp))
I cannot reproduce the problem with linearK. Which version of spatstat are you running? In the development version on my laptop spatstat_1.51-0.073 everything works. There has been changes to this code recently, so it is likely that this will be solved by updating to development version (see https://github.com/spatstat/spatstat).
I am new to TensorFlow. Currently, I am trying to evaluate the performance of distributed TensorFlow using Inception model provided by TensorFlow team.
The thing I want is to generate timestamps for some critical operations in a Parameter Server - Worker architecture, so I can measure the bottleneck (the network lag due to parameter transfer/synchronization or parameter computation cost) on replicas for one iteration (batch).
I came up with the idea of adding a customized dummy py_func operator designated of printing timestamps inside inception_distributed_train.py, with some control dependencies. Here are some pieces of code that I added:
def timer(s):
print ("-------- thread ID ", threading.current_thread().ident, ", ---- Process ID ----- ", getpid(), " ~~~~~~~~~~~~~~~ ", s, datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S.%f'))
return Falsedf
dummy1 = tf.py_func(timer, ["got gradients, before dequeues token "], tf.bool)
dummy2 = tf.py_func(timer, ["finished dequeueing the token "], tf.bool)
I modified
apply_gradients_op = opt.apply_gradients(grads, global_step=global_step)
with tf.control_dependencies([apply_gradients_op]):
train_op = tf.identity(total_loss, name='train_op')
into
with tf.control_dependencies([dummy1]):
apply_gradients_op = opt.apply_gradients(grads, global_step=global_step)
with tf.control_dependencies([apply_gradients_op]):
with tf.control_dependencies([dummy2]):
train_op = tf.identity(total_loss, name='train_op')
hoping to print the timestamps before evaluating the apply_gradient_op and after finishing evaluating the apply_gradient_op by enforcing node dependencies.
I did similar things inside sync_replicas_optimizer.apply_gradients, by adding two dummy print nodes before and after update_op:
dummy1 = py_func(timer, ["---------- before update_op "], tf_bool)
dummy2 = py_func(timer, ["---------- finished update_op "], tf_bool)
# sync_op will be assigned to the same device as the global step.
with ops.device(global_step.device), ops.name_scope(""):
with ops.control_dependencies([dummy1]):
update_op = self._opt.apply_gradients(aggregated_grads_and_vars, global_step)
# Clear all the gradients queues in case there are stale gradients.
clear_queue_ops = []
with ops.control_dependencies([update_op]):
with ops.control_dependencies([dummy2]):
for queue, dev in self._one_element_queue_list:
with ops.device(dev):
stale_grads = queue.dequeue_many(queue.size())
clear_queue_ops.append(stale_grads)
I understand that apply_gradient_op is the train_op returned by sync_replicas_optimizer.apply_gradient. And apply_gradient_op is the op to dequeue a token (global_step) from sync_queue managed by the chief worker using chief_queue_runner, so that replica can exit current batch and start a new batch.
In theory, apply_gradient_op should take some time as replica has to wait before it can dequeue the token (global_step) from sync_queue, but the print result for one replica I got, such as the time differences for executing apply_gradient_op is pretty short (~1/1000 sec) and sometimes the print output is indeterministic (especially for chief worker). Here is a snippet of the output on the workers (I am running 2 workers and 1 PS):
chief worker (worker 0) output
worker 1 output
My questions are:
1) I need to record the time TensorFlow takes to execute an op (such as train_op, apply_gradients_op, compute_gradients_op, etc.)
2) Is this the right direction to go, given my ultimate goal is to record the elapsed time for executing certain operations (such as the difference between the time a replica finishes computing gradients and the time it gets the global_step from sync_token)?
3) If this is not the way it should go, please guide me with some insights about the possible ways I could achieve my ultimate goal.
Thank you so much for reading my long long posts. as I have spent weeks working on this!