Spark driver failure recovery - apache-spark

I want to know about how spark restarts the spark driver in case of failure. My understanding is since the driver node is failed, all the computations will be lost, so the restart will mean re-submitting the application. I want to know how driver program is restarted w.r.t to Yarn as resource manager, I know that mesos has a standalone driver node and standalone mode we have --supervise flag but I'm not too sure about yarn. Any explanation will help. The answer I need w.r.t non-streaming application. Sorry for the big question.

Related

What is the benefit of using more then 1 driver core in spark yarn cluster mode?

what is the difference in using 1 vs 2 driver core in spark yarn cluster mode? If i use 2 driver cores in yarn cluster mode, then spark driver will be relaunched incase of failure? If so, how many retry if would do before failing?
Appreciate if anyone can share any article on this?
When you launch application in YARN cluster mode, it will create container for your driver.
This container - depending on your application - might need multiple cores and multiple gigs of memory. It all depends on how many sessions will connect to your Spark application at the same time and on complexity of your query.
If it looks like your query compiles slowly or your Spark Web UI/app hangs, it might be worth it to increase core count.
From the point of YARN, there is still only one driver container.

Spark Standalone vs YARN

What features of YARN make it better than Spark Standalone mode for multi-tenant cluster running only Spark applications? Maybe besides authentication.
There are a lot of answers at Google, pretty much of them sounds wrong to me, so I'm not sure where is the truth.
For example:
DZone, Deep Dive Into Spark Cluster Management
Standalone is good for small Spark clusters, but it is not good for
bigger clusters (there is an overhead of running Spark daemons —
master + slave — in cluster nodes)
But other cluster managers also require running agents on cluster nodes. I.e. YARN's slaves are called node managers. They may consume even more memory than Spark's slaves (Spark default is 1 GB).
This answer
The Spark standalone mode requires each application to run an executor
on every node in the cluster; whereas with YARN, you choose the number
of executors to use
agains Spark Standalone # executor/cores control, that shows how you can specify number of consumed resources at Standalone mode.
Spark Standalone Mode documentation
The standalone cluster mode currently only supports a simple FIFO
scheduler across applications.
Against the fact Standalone mode can use Dynamic Allocation, and you can specify spark.dynamicAllocation.minExecutors & spark.dynamicAllocation.maxExecutors. Also I haven't found a note about Standalone doesn't support FairScheduler.
This answer
YARN directly handles rack and machine locality
How does YARN may know anything about data locality in my job? Suppose, I'm storing file locations at AWS Glue (used by EMR as Hive metastore). Inside Spark job I'm querying some-db.some-table. How YARN may know what executor is better for job assignment?
UPD: found another mention about YARN and data locality https://jaceklaskowski.gitbooks.io/mastering-apache-spark/spark-data-locality.html. Still doesn't matter in case of S3 for example.

Zeppelin persists job in YARN

When I run a Spark job from Zeppelin, the job finishes with success, but it stays in YARN on mode running.
The problem is the job is taking a resource in YARN. I think that Zeppelin persists the job in YARN.
How can I resolve this problem?
Thank you
There are two solutions.
The quick one is to use the "restart interpreter" functionality, which is misnamed, since it merely stops the interpreter. In this case the Spark job in Yarn.
The elegant one is to configure Zeppelin to use dynamic allocation with Spark. In that case the Yarn application master will continue running, and with it the Spark driver, but all executors (which are the real resource hog) can be freed by Yarn, when they're not in use.
The easiest and straight-forward solution is to restart the spark interpreter.
But as Rick mentioned if you should use the spark dynamic allocation, an additional step of enabling spark shuffle service on all agent nodes is required(this by default is disabled).
Just close your spark context so that the spark job will get the status FINISHED.
Your memory should be released.

Does any of the executors run on the driver node in cluster deploy mode?

While running a program in Cluster mode, does any executor also run on the node on which the Driver Program is running.
Following text explains about the cluster mode:
https://spark.apache.org/docs/latest/cluster-overview.html
But doesn't answer this question.
Thanks
Anuj
This depends on the cluster manger implementation, configuration and requested resources. In general cluster manager is free to start multiple containers on the same physical node.
So without additional assumptions - driver can be, but doesn't have to be, colocated with one or more executors.

Spark yarn cluster vs client - how to choose which one to use?

The spark docs have the following paragraph that describes the difference between yarn client and yarn cluster:
There are two deploy modes that can be used to launch Spark applications on YARN. In cluster mode, the Spark driver runs inside an application master process which is managed by YARN on the cluster, and the client can go away after initiating the application. In client mode, the driver runs in the client process, and the application master is only used for requesting resources from YARN.
I'm assuming there are two choices for a reason. If so, how do you choose which one to use?
Please use facts to justify your response so that this question and answer(s) meet stackoverflow's requirements.
There are a few similar questions on stackoverflow, however those questions focus on the difference between the two approaches, but don't focus on when one approach is more suitable than the other.
A common deployment strategy is to submit your application from a gateway machine that is physically co-located with your worker machines (e.g. Master node in a standalone EC2 cluster). In this setup, client mode is appropriate. In client mode, the driver is launched directly within the spark-submit process which acts as a client to the cluster. The input and output of the application is attached to the console. Thus, this mode is especially suitable for applications that involve the REPL (e.g. Spark shell).
Alternatively, if your application is submitted from a machine far from the worker machines (e.g. locally on your laptop), it is common to use cluster mode to minimize network latency between the drivers and the executors. Note that cluster mode is currently not supported for Mesos clusters. Currently only YARN supports cluster mode for Python applications." -- Submitting Applications
What I understand from this is that both strategies use the cluster to distribute tasks; the difference is where the "driver program" runs: locally with spark-submit, or, also in the cluster.
When you should use either of them is detailed in the quote above, but I also did another thing: for big jars, I used rsync to copy them to the cluster (or even to master node) with 100 times the network speed, and then submitted from the cluster. This can be better than "cluster mode" for big jars. Note that client mode does not probably transfer the jar to the master. At that point the difference between the 2 is minimal. Probably client mode is better when the driver program is idle most of the time, to make full use of cores on the local machine and perhaps avoid transferring the jar to the master (even on loopback interface a big jar takes quite a bit of seconds). And with client mode you can transfer (rsync) the jar on any cluster node.
On the other hand, if the driver is very intensive, in cpu or I/O, cluster mode may be more appropriate, to better balance the cluster (in client mode, the local machine would run both the driver and as many workers as possible, making it over loaded and making it that local tasks will be slower, making it such that the whole job may end up waiting for a couple of tasks from the local machine).
Conclusion :
To sum up, if I am in the same local network with the cluster, I would
use the client mode and submit it from my laptop. If the cluster is
far away, I would either submit locally with cluster mode, or rsync
the jar to the remote cluster and submit it there, in client or
cluster mode, depending on how heavy the driver program is on
resources.*
AFAIK With the driver program running in the cluster, it is less vulnerable to remote disconnects crashing the driver and the entire spark job.This is especially useful for long running jobs such as stream processing type workloads.
Spark Jobs Running on YARN
When running Spark on YARN, each Spark executor runs as a YARN container. Where MapReduce schedules a container and fires up a JVM for each task, Spark hosts multiple tasks within the same container. This approach enables several orders of magnitude faster task startup time.
Spark supports two modes for running on YARN, “yarn-cluster” mode and “yarn-client” mode. Broadly, yarn-cluster mode makes sense for production jobs, while yarn-client mode makes sense for interactive and debugging uses where you want to see your application’s output immediately.
Understanding the difference requires an understanding of YARN’s Application Master concept. In YARN, each application instance has an Application Master process, which is the first container started for that application. The application is responsible for requesting resources from the ResourceManager, and, when allocated them, telling NodeManagers to start containers on its behalf. Application Masters obviate the need for an active client — the process starting the application can go away and coordination continues from a process managed by YARN running on the cluster.
In yarn-cluster mode, the driver runs in the Application Master. This means that the same process is responsible for both driving the application and requesting resources from YARN, and this process runs inside a YARN container. The client that starts the app doesn’t need to stick around for its entire lifetime.
yarn-cluster mode
The yarn-cluster mode is not well suited to using Spark interactively, but the yarn-client mode is. Spark applications that require user input, like spark-shell and PySpark, need the Spark driver to run inside the client process that initiates the Spark application. In yarn-client mode, the Application Master is merely present to request executor containers from YARN. The client communicates with those containers to schedule work after they start:
yarn-client mode
This table offers a concise list of differences between these modes:
Reference: https://blog.cloudera.com/blog/2014/05/apache-spark-resource-management-and-yarn-app-models/ - Apache Spark Resource Management and YARN App Models (web.archive.com mirror)
In yarn-cluster mode, the driver program will run on the node where application master is running where as in yarn-client mode the driver program will run on the node on which job is submitted on centralized gateway node.
Both answers by Ram and Chavati/Wai Lee are useful and helpful, but here I just want to added a couple of other points:
Much has been written about the proximity of driver to the executors, and that is a big factor. The other factors are:
Will the driver process be around until execution of job is finished?
How's returned data being handled?
#1. In spark client mode, the driver process must be up and running the whole time when the spark job is in execution. So if you have a truly long job that say take many hours to run, you need to make sure the driver process is still up and running, and that the driver session is not auto-logout.
On the other hand, after submitting a job to run in cluster mode, the process can go away. The cluster mode will keep running. So this is typically how a production job will run: the job can be triggered by a timer, or by an external event and then the job will run to its completion without worrying about the lifetime of the process submitting the spark job.
#2. In client mode, you can call sc.collect() to gather all the data back from all executors, and then write/save the returned data to a local Linux file on local disk. Now this may not work for cluster mode, as the 'driver' typically run in a different remote host. The data written up therefore need to be persisted in a common mounted volume (such as GPFS, NFS) or in distributed file system like HDFS. If the job is running under Hadoop/YARN, the more common way for cluster mode is simply ask each executor to persist the data to HDFS, and not to run collect( ) at all. Collect() actually have scalability issue when there are a large number of executors returning large amount of data - it can overwhelm the driver process.

Resources