PySpark Parallelism - python-3.x

I am new to spark and am trying to implement reading data from a parquet file and then after some transformation returning it to web ui as a paginated way. Everything works no issue there.
So now I want to improve the performance of my application, after some google and stack search I found out about pyspark parallelism.
What I know is that :
pyspark parallelism works by default and It creates a parallel process based on the number of cores the system has.
Also for this to work data should be partitioned.
Please correct me if my understanding is not right.
Questions/doubt:
I am reading data from one parquet file, so my data is not partitioned and if I use the .repartition() method on my dataframe that is expensive. so how should I use PySpark Parallelism here ?
Also I could not find any simple implementation of pyspark parallelism, which could explain how to use it.

In spark cluster 1 core reads one partition so if you are on multinode spark cluster
then you need to leave some meory for existing system manager like Yarn etc.
https://spoddutur.github.io/spark-notes/distribution_of_executors_cores_and_memory_for_spark_application.html
you can use reparation and specify number of partitions
df.repartition(n)
where n is the number of partition. Repartition is for parlelleism, it will be ess expensive then process your single file without any partition.

Related

spark partitionBy out of memory failures

I have a Spark 2.2 job written in pyspark that's trying to read in 300BT of Parquet data in a hive table, run it through a python udf, and then write it out.
The input is partitioned on about five keys and results in about 250k partitions.
I then want to write it out using the same partition scheme using the .partitionBy clause for the dataframe.
When I don't use a partitionBy clause the data writes out and the job does finish eventually. However with the partitionBy clause I continuously see out of memory failures on the spark UI.
Upon further investigation the source parquet data is about 800MB on disk (compressed using snappy), and each node has about 50G of memory available to it.
Examining the spark UI I see that the last step before writing out is doing a sort. I believe this sort is the cause of all my issues.
When reading in a dataframe of partitioned data, is there any way to preserve knowledge of this partitioning so spark doesn't run an unnecessary sort before writing it out?
I'm trying to avoid a shuffle step here by repartitioning that could equally result in further delays of this.
Ultimately I can rewrite to read one partition at a time, but I think that's not a good solution and that spark should already be able to handle this use case.
I'm running with about 1500 executors across 150 nodes on ec2 r3.8xlarge.
I've tried smaller executor configs and larger ones and always hit the same out of memory issues.

How does mllib code run on spark?

I am new to distributed computing, and I'm trying to run Kmeans on EC2 using Spark's mllib kmeans. As I was reading through the tutorial I found the following code snippet on
http://spark.apache.org/docs/latest/mllib-clustering.html#k-means
I am having trouble understanding how this code runs inside the cluster. Specifically, I'm having trouble understanding the following:
After submitting the code to master node, how does spark know how to parallelize the job? Because there seem to be no part of the code that deals with this.
Is the code copied to all nodes and executed on each node? Does the master node do computation?
How do node communitate the partial result of each iteration? Is this dealt inside the kmeans.train code, or is the spark core takes care of it automatically?
Spark divides data to many partitions. For example, if you read a file from HDFS, then partitions should be equal to partitioning of data in HDFS. You can manually specify number of partitions by doing repartition(numberOfPartitions). Each partition can be processed on separate node, thread, etc. Sometimes data are partitioned by i.e. HashPartitioner, which looks on hash of the data.
Number of partitions and size of partitions generally tells you if data is distributed/parallelized correctly. Creating partitions of data is hidden in RDD.getPartitions methods.
Resource scheduling depends on cluster manager. We can post very long post about them ;) I think that in this question, the partitioning is the most important. If not, please inform me, I will edit answer.
Spark serializes clusures, that are given as arguments to transformations and actions. Spark creates DAG, which is sent to all executors and executors execute this DAG on the data - it launches closures on each partition.
Currently after each iteration, data is returned to the driver and then next job is scheduled. In Drizzle project, AMPLab/RISELab is creating possibility to create multiple jobs on one time, so data won't be sent to the driver. It will create DAG one time and schedules i.e. job with 10 iterations. Shuffle between them will be limited / will not exists at all. Currently DAG is created in each iteration and job in scheduled to executors
There is very helpful presentation about resource scheduling in Spark and Spark Drizzle.

Apache Spark node asking master for more data?

I'm trying to benchmark a few approaches to putting an image processing algorithm into apache spark. For one step in this algorithm, a computation on a pixel in the image will depend on an unknown amount of surrounding data, so we can't partition the image with guaranteed sufficient overlap a priori.
One solution to that problem I need to benchmark is for a worker node to ask the master node for more data when it encounters a pixel with insufficient surrounding data. I'm not convinced this is the way to do things, but I need to benchmark it anyway because of reasons.
Unfortunately, after a bunch of googling and reading docs I can't find any way for a processingFunc called as part of sc.parallelize(partitions).map(processingFunc) to query the master node for more data from a different partition mid-computation.
Does a way for a worker node to ask the master for more data exist in spark, or will I need to hack something together that kind of goes around spark?
Master Node in Spark is for allocating the resources to a particular job and once the resources are allocated, the Driver ships the complete code with all its dependencies to the various executors.
The first step in every code is to load the data to the Spark cluster. You can read the data from any underlying data repository like Database, filesystem, webservices etc.
Once data is loaded it is wrapped into an RDD which is partitioned across the nodes in the cluster and further stored in the workers/ Executors Memory. Though you can control the number of partitions by leveraging various RDD API's but you should do it only when you have valid reasons to do so.
Now all operations are performed over RDD's using its various methods/ Operations exposed by RDD API. RDD keep tracks of partitions and partitioned data and depending upon the need or request it automatically query the appropriate partition.
In nutshell, you do not have to worry about the way data is partitioned by RDD or which partition stores which data and how they communicate with each other but if you do care, then you can write your own custom partitioner, instructing Spark of how to partition your data.
Secondly if your data cannot be partitioned then I do not think Spark would be an ideal choice because that will result in processing of everything in 1 single machine which itself is contrary to the idea of distributed computing.
Not sure what is exactly your use case but there are people who have been leveraging Spark for Image processing. see here for the comments from Databricks

How to combine small parquet files with Spark?

I have a Hive table that has a lot of small parquet files and I am creating a Spark data frame out of it to do some processing using SparkSQL. Since I have a large number of splits/files my Spark job creates a lot of tasks, which I don't want. Basically what I want is the same functionality that Hive provides, that is, to combine these small input splits into larger ones by specifying a max split size setting. How can I achieve this with Spark? I tried using the coalesce function, but I can only specify the number of partitions with it (I can only control the number of output files with it). Instead I really want some control over the (combined) input split size that a task processes.
Edit: I am using Spark itself, not Hive on Spark.
Edit 2: Here is the current code I have:
//create a data frame from a test table
val df = sqlContext.table("schema.test_table").filter($"my_partition_column" === "12345")
//coalesce it to a fixed number of partitions. But as I said in my question
//with coalesce I cannot control the file sizes, I can only specify
//the number of partitions
df.coalesce(8).write.mode(org.apache.spark.sql.SaveMode.Overwrite)
.insertInto("schema.test_table")
I have not tried but read it in getting started guide that setting this property should work "hive.merge.sparkfiles=true"
https://cwiki.apache.org/confluence/display/Hive/Hive+on+Spark%3A+Getting+Started
In case using Spark on Hive, than Spark's abstraction doesn't provide explicit split of data. However we can control the parallelism in several ways.
You can leverage DataFrame.repartition(numPartitions: Int) to explicitly control the number of partitions.
In case you are using Hive Context than ensure hive-site.xml contains the CombinedInputFormat. That may help.
For more info, take a look at following documentation about Spark data parallelism - http://spark.apache.org/docs/latest/tuning.html#level-of-parallelism.

What should be the optimal value for spark.sql.shuffle.partitions or how do we increase partitions when using Spark SQL?

I am using Spark SQL actually hiveContext.sql() which uses group by queries and I am running into OOM issues. So thinking of increasing value of spark.sql.shuffle.partitions from 200 default to 1000 but it is not helping.
I believe this partition will share data shuffle load so more the partitions less data to hold. I am new to Spark. I am using Spark 1.4.0 and I have around 1TB of uncompressed data to process using hiveContext.sql() group by queries.
If you're running out of memory on the shuffle, try setting spark.sql.shuffle.partitions to 2001.
Spark uses a different data structure for shuffle book-keeping when the number of partitions is greater than 2000:
private[spark] object MapStatus {
def apply(loc: BlockManagerId, uncompressedSizes: Array[Long]): MapStatus = {
if (uncompressedSizes.length > 2000) {
HighlyCompressedMapStatus(loc, uncompressedSizes)
} else {
new CompressedMapStatus(loc, uncompressedSizes)
}
}
...
I really wish they would let you configure this independently.
By the way, I found this information in a Cloudera slide deck.
OK so I think your issue is more general. It's not specific to Spark SQL, it's a general problem with Spark where it ignores the number of partitions you tell it when the files are few. Spark seems to have the same number of partitions as the number of files on HDFS, unless you call repartition. So calling repartition ought to work, but has the caveat of causing a shuffle somewhat unnecessarily.
I raised this question a while ago and have still yet to get a good answer :(
Spark: increase number of partitions without causing a shuffle?
It's actually depends on your data and your query, if Spark must load 1Tb, there is something wrong on your design.
Use the superbe web UI to see the DAG, mean how Spark is translating your SQL query to jobs/stages and tasks.
Useful metrics are "Input" and "Shuffle".
Partition your data (Hive / directory layout like /year=X/month=X)
Use spark CLUSTER BY feature, to work per data partition
Use ORC / Parquet file format because they provide "Push-down filter", useless data is not loaded to Spark
Analyze Spark History to see how Spark is reading data
Also, OOM could happen on your driver?
-> this is another issue, the driver will collect at the end the data you want. If you ask too much data, the driver will OOM, try limiting your query, or write another table (Spark syntax CREATE TABLE ...AS).
I came across this post from Cloudera about Hive Partitioning. Check out the "Pointers" section talking about number of partitions and number of files in each partition resulting in overloading the name node, which might cause OOM.

Resources