I am a beginner learning deep learning by Keras.
The ImageDataGenerator class in Keras and the flow_from_directory function made it easy to label images.
But all of themAs I configure the electory, there seems to be a limitation in configuring the dataset.
For example, if model want to learn ensemble by dividing the data into 5 folds,
then should i make many directory?
or to bootstrap the data and use the verification data as out of bag data, should I implement it myself?
I'd appreciate it if you could give me a little advice!
As a reference photo, I uploaded the process of labeling with the flow_from_directory function, (88 state classification model)
Related
I am trying to use UNSW-NB15 to train a model. After the model is trained, I would like to use the model on live network data. I began creating this using a supervised LSTM but started wondering about handling the data from the network and the necessity to create a data pipeline that preprocesses network data to get it in a manner similar to the UNSW-nb15 dataset. This seemed impractical to me as this would most likely mean going through data manually with each network data source. I am thinking that an unsupervised model may be better for my purposes. I still wanted to use LSTM but I'm finding very little in terms of information for creating an unsupervised lstm model in keras. Read a paper suggesting using BINGO (Binary Information gain optimization) or NEO (nonparametric entropy optimization) to train the lstm model. I am not certain how this can be done in keras. I am unable to find such functions there. (I will search python libraries though). Any suggestions?
I am still researching.
I'm using Windows 10 machine. Libraries: Keras with Tensorflow 2.0 Embeddings: Glove(100 dimensions).
I am trying to implement an LSTM architecture for multi-label text classification.
I am using different types of fine-tuning to achieve better results but with no luck so far.
The main problem I believe is the difference in class distributions of my dataset but after a lot of tries and errors, I couldn't implement stratified-k-split in Keras.
I am also experimenting with dropout layers, batch sizes, # of layers, learning rates, clip values, validation splits but I get a minimum boost or worst performance sometimes.
For metrics, I use mainly ROC and F1.
I also followed the suggestion from a StackOverflow member who said to delete some of my examples so I can balance my dataset but if I do that I will have a very low number of examples.
What would you suggest to me?
If someone can provide code based on my implementation for
stratified-k-split I would be grateful cause I have checked all the
online resources but can't implement it.
Any tips, suggestions will be really helpful.
Metrics Plots
Dataset form+Embedings form+train-test-split form
Dataset's labels distribution
My LSTM implementation
Resnet50 is cool when we need classify different objects, say tree, dogs, tampons etc. But what if we want further classify say types of trees, or icecreams(Cone, candystick, cup) using ResNet50. Is there a way this would work? PyTorch answers are also welcome.
Yes it is possible.
ResNet50 is just an architecture of a artificial neural network. What you want to classify depends on the training data you feed it or the data it was trained on if you use pretrained weights.
If you want to classify types of trees, you would need to create (or find) a data set that show different type of trees with the appropriate label. Then you can train on the different tree types.
I suggest that you go through some tutorials, as explaining the whole process of data collection, data preprocessing, data annotation, and training an ANN or classic machine learning models would be a bit much here.
Best of luck
I want to train a facial recognition CNN from scratch. I can write a Keras Sequential() model following popular architectures and copying their networks.
I wish to use the LFW dataset, however I am confused regarding the technical methodology. Do I have to crop each face to a tight-fitting box? That seems impractical, as the dataset has 13000+ faces.
Lastly, I know it's stupid, but all I have to do is preprocess the images (of course), then fit the model to these images? What's the exact procedure?
Your question is very open ended. Before preprocessing and fitting the model, you need to understand Object Detection. Once you understand what object detection you will get answer to your 1st question whether you are required to manually crop every 13000 image. The answer is no. However, you will have to draw bounding boxes around faces and assign label to images if they are not available in the training data.
Your second question is very vague . What do you mean by exact procedure? Is it the steps you need to do or how to do preprocessing and fitting of the model in python/or any other language? There are lots of references available on the internet about how to do preprocessing and model training for every specific problem. There are no universal steps which can be applied to any problem
I don't have much experience with training neural networks. I have 4 variable vectors as input and I have respectively 3 variable output vector. I want to create a neural network that takes these inputs and outputs which have some unknown correlation(might not be linear) between them and train. So that when I put previously untrained data through it should predict the correlated output.
I was wondering,
What type of model should I use in such scenarios? Is it Restricted boltzmann machine, regression, GAN, etc?
What library is easiest to learn and implement for such a model? eg:- TensorFlow, PyTorch, etc
If images were involved which can be processed as fft arrays, would the model change.
I did find this answer, but I am not satisfied with it.
Please let me know if there are any functions or other points you would like me to know. Any help is much appreciated.
A multilayer perceprton is a good place to start.
Keras is the highest level/easiest to use library I have used.
If you are working with images or spatially structured data a convolutional neural network will probably work best.