What is Python 3 `str.__getitem__` computional complexity? - python-3.x

''' Set up '''
s= open("Bilion_of_UTF-8_chars.txt",encoding="UTF-8").read()
'''
The following doesn't look like a cheap operation
because Python3 `str`-s are UTF-8 encoded (EDIT: in some implementations only).
'''
my_char= s[453_452_345]
However, many people write loops like this:
for i in range(len(s)):
do_something_with(s[i])
using indexing operation up to n times or more.
How does Python3 resolve the problem of indexing UTF-8 characters in strings for both code snippets?
Does it always perform a linear look-up for nth char (which is both simple & expensive resolution)?
Or maybe it stores some additional C pointers to perform smart index calculations?

What is Python 3 str.__getitem__ computional complexity?
A: O(1)
Python strings are not utf-8 internally: in Python 3 when getting text from any external source, the text is decoded according to a given codec. This text decoding defaults to utf-8 in most sources/platforms, but varying accordingly to the S.O.'s default - anyway, all relevant "text importing" APIs, like opening a file, or connecting to a DB, allow you to specify the text encoding to use.
Inner strings use one of "Latin-1", "UCS-2" or "UCS-4" according to the needs of the "widest" codepoint in the text string.
This is new from Python 3.3 onwards (prior to that, all internal string representation would default to 32bit UCS-4, even for ASCII-only text). The spec is documented on PEP-393.
Therefore, Python can just zero-in the correct character given its index.
As an anecdote, Luciano Ramalho (author of Fluent Python book), wrote Leanstr, a learning-purpose implementation of a string class that will hold utf-8 internally. Of course, then your worries about __getitem__ complexity apply: https://github.com/ramalho/leanstr
Unfortunatelly, (or fortunatelly, in this case), a lot of the standard library and native code extensions to Python will not accept a class similar to str, even if it inherits from str and keeps its data separetely, re-implementing all dunder methods. But if all str methods are in place, any pure-python code dealing with strings should accept a LeanStr instance.
Other implementations: Pypy
So, it happens that how text is used internally is an "implementation detail", and Pypy from version 7.1 onwards does use utf-8 byte strings internally for its text objects.
Unlike Ramalho's naive "leanstr" above, however, they do keep an index for each 4th utf-8 char so that char access by index can still be made in O(1). I did not find any docs about it, but the code for creating the index is here.
I've mentioned this question on twiter, as I am an acquittance of Ramalho, and eventually Carl Friederich Bolz-Terich, one of Pypy developers, reached back:
It's worked really quite well for us! Most Unicode strings don't need this index, and zero copy utf-8 decoding is quite cool. What's most annoying is actually str.find, because there you need the reverse conversion, from byte index to char index. we don't have an index for that.
Tweet

Related

How to send a string instead of bytearray in python via USB port?

In labview, I convert an array to string and just output it:
But in python 3.6, when I use serial.write(string) function, string needed to be turned into a bytearray.
Is there anyway I can send a string without convert it to bytearray?
No.
A Python 3.x string is a sequence of Unicode code points. A Unicode code point is an abstract entity, a bit like the colour red: in order to store it or transmit it in digital form it has to be encoded into a specific representation of one or more bytes - a bit like encoding the colour red as #ff0000. To send a string to another computer, you need to encode it into a byte sequence, and because there are many possible encodings you might want to use, you need to specify which one:
bytesToSend = myString.encode(encoding="utf-8")
Why didn't you need to do this in LabVIEW? Many older programming languages, including both LabVIEW and Python before 3.x, are based on the assumption that strings are encoded 1:1 into bytes - every character is one byte and every byte is one character. That's the way it worked in the early days of computing when memory was tight and non-English text was unusual, but it's not good enough now that software has to be used globally in a networked world.
Python 3.x took the step of explicitly breaking the link and making strings and byte sequences distinct and incompatible types: this means you have to deal with the difference, but it's not a big deal, just encode and decode as necessary, and in my opinion it's less confusing than trying to pretend that strings and byte sequences are still the same thing.
LabVIEW is finally catching up with Unicode in the NXG version, although for backward compatibility it lets you get away with wiring strings directly to some functions that really operate on byte sequences.
For more information I recommend reading the Python 3.x Unicode HOWTO.

How to use Unicode::Normalize to create most compatible windows-1252 encoded string?

I have a legacy app in Perl processing XML encoded in UTF-8 most likely and which needs to store some data of that XML in some database, which uses windows-1252 for historical reasons. Yes, this setup can't support all possible characters of the Unicode standard, but in practice I don't need to anyway and can try to be reasonable compatible.
The specific problem currently is a file containing LATIN SMALL LETTER U, COMBINING DIAERESIS (U+0075 U+0308), which makes Perl break the existing encoding of the Unicode string to windows-1252 with the following exception:
"\x{0308}" does not map to cp1252
I was able to work around that problem using Unicode::Normalize::NFKC, which creates the character U+00FC (ü), which perfectly fine maps to windows-1252. That lead to some other problem of course, e.g. in case of the character VULGAR FRACTION ONE HALF (½, U+00BD), because NFKC creates DIGIT ONE, FRACTION SLASH, DIGIT TWO (1/2, U+0031 U+2044 U+0032) for that and Perl dies again:
"\x{2044}" does not map to cp1252
According to normalization rules, this is perfectly fine for NFKC. I used that because I thought it would give me the most compatible result, but that was wrong. Using NFC instead fixed both problems, as both characters provide a normalization compatible with windows-1252 in that case.
This approach gets additionally problematic for characters for which a normalization compatible with windows-1252 is available in general, only different from NFC. One example is LATIN SMALL LIGATURE FI (fi, U+FB01). According to it's normalization rules, it's representation after NFC is incompatible with windows-1252, while using NFKC this time results in two characters compatible with windows-1252: fi (U+0066 U+0069).
My current approach is to simply try encoding as windows-1252 as is, if that fails I'm using NFC and try again, if that fails I'm using NFKC and try again and if that fails I'm giving up for now. This works in the cases I'm currently dealing with, but obviously fails if all three characters of my examples above are present in a string at the same time. There's always one character then which results in windows-1252-incompatible output, regardless the order of NFC and NFKC. The only question is which character breaks when.
BUT the important point is that each character by itself could be normalized to something being compatible with windows-1252. It only seems that there's no one-shot-solution.
So, is there some API I'm missing, which already converts in the most backwards compatible way?
If not, what's the approach I would need to implement myself to support all the above characters within one string?
Sounds like I would need to process each string Unicode-character by Unicode-character, normalize individually with what is most compatible with windows-1252 and than concatenate the results again. Is there some incremental Unicode-character parser available which deals with combining characters and stuff already? Does a simple Unicode-character based regular expression handles this already?
Unicode::Normalize provides additional functions to work on partial strings and such, but I must admit that I currently don't fully understand their purpose. The examples focus on concatenation as well, but from my understanding I first need some parsing to be able to normalize individual characters differently.
I don't think you're missing an API because a best-effort approach is rather involved. I'd try something like the following:
Normalize using NFC. This combines decomposed sequences like LATIN SMALL LETTER U, COMBINING DIAERESIS.
Extract all codepoints which aren't combining marks using the regex /\PM/g. This throws away all combining marks remaining after NFC conversion which can't be converted to Windows-1252 anyway. Then for each code point:
If the codepoint can be converted to Windows-1252, do so.
Otherwise try to normalize the codepoint with NFKC. If the NFKC mapping differs from the input, apply all steps recursively on the resulting string. This handles things like ligatures.
As a bonus: If the codepoint is invariant under NFKC, convert to NFD and try to convert the first codepoint of the result to Windows-1252. This converts characters like Ĝ to G.
Otherwise ignore the character.
There are of course other approaches that convert unsupported characters to ones that look similar but they require to create mappings manually.
Since it seems that you can convert individual characters as needed (to cp-1252 encoding), one way is to process character by character, as proposed, once a word fails the procedure.
The \X in Perl's regex matches a logical Unicode character, an extended grapheme cluster, either as a single codepoint or a sequence. So if you indeed can convert all individual (logical) characters into the desired encoding, then with
while ($word =~ /(\X)/g) { ... }
you can access the logical characters and apply your working procedure to each.
In case you can't handle all logical characters that may come up, piece together an equivalent of \X using specific character properties, for finer granularity with combining marks or such (like /((.)\p{Mn}?)/, or \p{Nonspacing_Mark}). The full, grand, list is in perluniprops.

Erlang binary strings by default

I am writing an erlang module that has to deal a bit with strings, not too much, however, I do some tcp recv and then some parsing over the data.
While matching data and manipulating strings, I am using binary module all the time like binary:split(Data,<<":">>) and basically using <<"StringLiteral">> all the time.
Till now I have not encounter difficulties or missing methods from the alternative( using lists) and everything is coming out quite naturally except maybe for adding the <<>>, but I was wondering if this way of dealing with strings might have drawbacks I am not aware of.
Any hint?
As long as you and your team remember that your strings are binaries and not lists, there are no inherent problems with this approach. In fact, Couch DB took this approach as an optimization which apparently paid nice dividends.
You do need to be very aware of how your string is encoded in your binaries. When you do <<"StringLiteral">> in your code, you have to be aware that this is simply a binary serialization of the list of code-points. Your Erlang compiler reads your code as ISO-8859-1 characters, so as long as you only use Latin-1 characters and do this consistently, you should be fine, But this isn't very friendly to internationalization.
Most application software these day should prefer a unicode encoding. UTF-8 is compatible with your <<"StringLiteral">> for the first 128 codepoints, but not for the second 128, so be careful. You might be surprised what you see on your UTF-8 encoded web applications if you use <<"StrïngLïteral">> in your code.
There was an EEP proposal for binary support in the form of <<"StrïngLïteral"/utf8>>, but I don't think this is finalized.
Also be aware that your binary:split/2 function may have unexpected results in UTF-8 if there is a multi-byte character that contains the IS0-8859-1 byte that to are splitting on.
Some would argue that UTF-16 is a better encoding to use because it can be parsed more efficiently and can be more easily split by index, if you are assuming or verify that there are no 32-bit characters.
The unicode module should be use, but tread carefully when you use literals.
The only thing to be aware of is that a binary is a slice of bytes, whereas a list is a list of unicode codepoints. In other words, the latter is naturally unicode whereas the former requires you to do some sort of encoding, usually UTF-8.
To my knowledge, there is no drawbacks to your method.
Binaries are very efficient structures to store strings. If they are longer than 64B they are also stored outside process heap so they are not object of GC (still GC'ed by ref counting when last ref lost). Don't forget use iolists for concatenation them to avoid copying when performance matter.

How to flip text horizontally?

i'm need to write a function that will flip all the characters of a string left-to-right.
e.g.:
Thė quiçk ḇrown fox jumṕềᶁ ovểr thë lⱥzy ȡog.
should become
.goȡ yzⱥl ëht rểvo ᶁềṕmuj xof nworḇ kçiuq ėhT
i can limit the question to UTF-16 (which has the same problems as UTF-8, just less often).
Naive solution
A naive solution might try to flip all the things (e.g. word-for-word, where a word is 16-bits - i would have said byte for byte if we could assume that a byte was 16-bits. i could also say character-for-character where character is the data type Char which represents a single code-point):
String original = "ɗỉf̴ḟếr̆ęnͥt";
String flipped = "";
foreach (Char c in s)
{
flipped = c+fipped;
}
Results in the incorrectly flipped text:
ɗỉf̴ḟếr̆ęnͥt
̨tͥnę̆rếḟ̴fỉɗ
This is because one "character" takes multiple "code points".
ɗỉf̴ḟếr̆ęnͥt
ɗ ỉ f ˜ ḟ ế r ˘ ę n i t ˛
and flipping each "code point" gives:
˛ t i n ę ˘ r ế ḟ ˜ f ỉ ɗ
Which not only is not a valid UTF-16 encoding, it's not the same characters.
Failure
The problem happens in UTF-16 encoding when there is:
combining diacritics
characters in another lingual plane
Those same issues happen in UTF-8 encoding, with the additional case
any character outside the 0..127 ASCII range
i can limit myself to the simpler UTF-16 encoding (since that's the encoding that the language that i'm using has (e.g. C#, Delphi)
The problem, it seems to me, is discovering if a number of subsequent code points are combining characters, and need to come along with the base glyph.
It's also fun to watch an online text reverser site fail to take this into account.
Note:
any solution should assume that don't have access to a UTF-32 encoding library (mainly becuase i don't have access to any UTF-32 encoding library)
access to a UTF-32 encoding library would solve the UTF-8/UTF-16 lingual planes problem, but not the combining diacritics problem
The term you're looking for is “grapheme cluster”, as defined in Unicode TR29 Cluster Boundaries.
Group the UTF-16 code units into Unicode code points (=characters) using the surrogate algorithm (easy), then group the characters into grapheme clusters using the Grapheme_Cluster_Break rules. Finally reverse the group order.
You will need a copy of the Unicode character database in order to recognise grapheme cluster boundaries. That's already going to take up a considerable amount of space, so you're probably going to want to get a library to do it. For example in ICU you might use a CharacterIterator (which is misleadingly named as it works on grapheme clusters, not ‘characters’ as Unicode knows it).
If you work in UTF-32, you solve the non-base-plane issue. Converting from UTF-8 or UTF-16 to UTF-32 (and back) is relatively simple bit twiddling (see Wikipedia). You don't have to have a library for it.
Most of the combining characters are in a few ranges. You could determine those ranges by scanning the Unicode database (see Unicode.org). Hardcode those ranges into your application. With that, you can determine the groups of codepoints that represent a single character. (The drawback is that new combining marks could be introduced in the future, and you'd need to update your table.)
Segment appropriately, reverse the order (segment by segment), and convert back to UTF-8 or UTF-16 (or whatever you want).
Text Mechanic's Text Generator seems to do this in JavaScript. I'm sure it would be possible to translate the JS into another language after obtaining the author's consent (if you can find a 'contact' link for that site).

What defines data that can be stored in strings

A few days ago, I asked why its not possible to store binary data, such as a jpg file into a string variable.
Most of the answers I got said that string is used for textual information such as what I'm writing now.
What is considered textual data though? Bytes of a certain nature represent a jpg file and those bytes could be represented by character byte values...I think. So when we say strings are for textual information, is there some sort of range or list of characters that aren't stored?
Sorry if the question sounds silly. Just trying to 'get it'
I see three major problems with storing binary data in strings:
Most systems assume a certain encoding within string variables - e.g. if it's a UTF-8, UTF-16 or ASCII string. New line characters may also be translated depending on your system.
You should watch out for restrictions on the size of strings.
If you use C style strings, every null character in your data will terminate the string and any string operations performed will only work on the bytes up to the first null.
Perhaps the most important: it's confusing - other developers don't expect to find random binary data in string variables. And a lot of code which works on strings might also get really confused when encountering binary data :)
I would prefer to store binary data as binary, you would only think of converting it to text when there's no other choice since when you convert it to a textual representation it does waste some bytes (not much, but it still counts), that's how they put attachments in email.
Base64 is a good textual representation of binary files.
I think you are referring to binary to text encoding issue. (translate a jpg into a string would require that sort of pre-processing)
Indeed, in that article, some characters are mentioned as not always supported, other can be confusing:
Some systems have a more limited character set they can handle; not only are they not 8-bit clean, some can't even handle every printable ASCII character.
Others have limits on the number of characters that may appear between line breaks.
Still others add headers or trailers to the text.
And a few poorly-regarded but still-used protocols use in-band signaling, causing confusion if specific patterns appear in the message. The best-known is the string "From " (including trailing space) at the beginning of a line used to separate mail messages in the mbox file format.
Whoever told you you can't put 'binary' data into a string was wrong. A string simply represents an array of bytes that you most likely plan on using for textual data... but there is nothing stopping you from putting any data in there you want.
I do have to be careful though, because I don't know what language you are using... and in some languages \0 ends the string.
In C#, you can put any data into a string... example:
byte[] myJpegByteArray = GetBytesFromSomeImage();
string myString = Encoding.ASCII.GetString(myJpegByteArray);
Before internationalization, it didn't make much difference. ASCII characters are all bytes, so strings, character arrays and byte arrays ended up having the same implementation.
These days, though, strings are a lot more complicated, in order to deal with thousands of foreign language characters and the linguistic rules that go with them.
Sure, if you look deep enough, everything is just bits and bytes, but there's a world of difference in how the computer interprets them. The rules for "text" make things look right when it's displayed to a human, but the computer is free to monkey with the internal representation. For example,
In Unicode, there are many encoding systems. Changing between them makes every byte different.
Some languages have multiple characters that are linguistically equivalent. These could switch back and forth when you least expect it.
There are different ways to end a line of text. Unintended translations between CRLF and LF will break a binary file.
Deep down everything is just bytes.
Things like strings and pictures are defined by rules about how to order bytes.
strings for example end in a byte with value 32 (or something else)
jpg's don't
Depends on the language. For example in Python string types (str) are really byte arrays, so they can indeed be used for binary data.
In C the NULL byte is used for string termination, so a sting cannot be used for arbitrary binary data, since binary data could contain null bytes.
In C# a string is an array of chars, and since a char is basically an alias for 16bit int, you can probably get away with storing arbitrary binary data in a string. You might get errors when you try to display the string (because some values might not actually correspond to a legal unicode character), and some operations like case conversions will probably fail in strange ways.
In short it might be possible in some langauges to store arbitrary binary data in strings, but they are not designed for this use, and you may run into all kinds of unforseen trouble. Most languages have a byte-array type for storing arbitrary binary data.
I agree with Jacobus' answer:
In the end all data structures are made up of bytes. (Well, if you go even deeper: of bits). With some abstraction, you could say that a string or a byte array are conventions for programmers, on how to access them.
In this regard, the string is an abstraction for data interpreted as a text. Text was invented for communication among humans, computers or programs do not communicate very well using text. SQL is textual, but is an interface for humans to tell a database what to do.
So in general, textual data, and therefore strings, are primarily for human to human, or human to machine interaction (say for the content of a message box). Using them for something else (e.g. reading or writing binary image data) is possible, but carries lots of risk bacause you are using the data type for something it was not designed to handle. This makes it much more error prone. You may be able to store binary data in strings, mbut just because you are able to shoot yourself in the foot, you should avoid doing so.
Summary: You can do it. But you better don't.
Your original question (c# - What is string really good for?) made very little sense. So the answers didn't make sense, either.
Your original question said "For some reason though, when I write this string out to a file, it doesn't open." Which doesn't really mean much.
Your original question was incomplete, and the answers were misleading and confusing. You CAN store anything in a String. Period. The "strings are for text" answers were there because you didn't provide enough information in your question to determine what's going wrong with your particular bit of C# code.
You didn't provide a code snippet or an error message. That's why it's hard to 'get it' -- you're not providing enough details for us to know what you don't get.

Resources