BayesSearchCV - Add variance penalty to average over cross-validation folds? - scikit-optimize

I am using BayesSearchCV to find hyperparameters for an XGBoost model on a noisy data set. Even with a perfect model I can only expect to get an out of sample explained variance of around 10%. I am using 10-fold cross validation, but I am pretty sure that I am over-fitting. The overfit parameters happen to give good scores on some of the folds but not on others. What happens is the the individual scores for the 10-folds are all over the place, some very low, some quite high. BayesSearchCV selects the hyper-parameters where the AVERAGE over the 10 folds is largest. But I would like to penalize the average by subtracting a term proportional to the variance across the folds, to keep down overfitting. Is there any way to do this? I know I can change the "scoring" function, but that seems to be for each fold individually, not for how the different scores for the folds get combined into a single score.

Related

What do sklearn.cross_validation scores mean?

I am working on a time-series prediction problem using GradientBoostingRegressor, and I think I'm seeing significant overfitting, as evidenced by a significantly better RMSE for training than for prediction. In order to examine this, I'm trying to use sklearn.model_selection.cross_validate, but I'm having problems understanding the result.
First: I was calculating RMSE by fitting to all my training data, then "predicting" the training data outputs using the fitted model and comparing those with the training outputs (the same ones I used for fitting). The RMSE that I observe is the same order of magnitude the predicted values and, more important, it's in the same ballpark as the RMSE I get when I submit my predicted results to Kaggle (although the latter is lower, reflecting overfitting).
Second, I use the same training data, but apply sklearn.model_selection.cross_validate as follows:
cross_validate( predictor, features, targets, cv = 5, scoring = "neg_mean_squared_error" )
I figure the neg_mean_squared_error should be the square of my RMSE. Accounting for that, I still find that the error reported by cross_validate is one or two orders of magnitude smaller than the RMSE I was calculating as described above.
In addition, when I modify my GradientBoostingRegressor max_depth from 3 to 2, which I would expect reduces overfitting and thus should improve the CV error, I find that the opposite is the case.
I'm keenly interested to use Cross Validation so I don't have to validate my hyperparameter choices by using up Kaggle submissions, but given what I've observed, I'm not clear that the results will be understandable or useful.
Can someone explain how I should be using Cross Validation to get meaningful results?
I think there is a conceptual problem here.
If you want to compute the error of a prediction you should not use the training data. As the name says theese type of data are used only in training, for evaluating accuracy scores you ahve to use data that the model has never seen.
About cross-validation I can tell that it's an approach to find the best training/testing set. The process is as follows: you divide your data into n groups and you do various iterating changing the testing group you pick. If you have n groups you will do n iteration and each time the training and testing set will be different. It's more understamdable in the image below.
Basically what you should do it's kile this:
Train the model using months from 0 to 30 (for example)
See the predictions made with months from 31 to 35 as input.
If the input has to be the same lenght divide feature in half (should be 17 months).
I hope I understood correctly, othewise comment.

Why does more features in a random forest decrease accuracy dramatically?

I am using sklearn's random forests module to predict values based on 50 different dimensions. When I increase the number of dimensions to 150, the accuracy of the model decreases dramatically. I would expect more data to only make the model more accurate, but more features tend to make the model less accurate.
I suspect that splitting might only be done across one dimension which means that features which are actually more important get less attention when building trees. Could this be the reason?
Yes, the additional features you have added might not have good predictive power and as random forest takes random subset of features to build individual trees, the original 50 features might have got missed out. To test this hypothesis, you can plot variable importance using sklearn.
Your model is overfitting the data.
From Wikipedia:
An overfitted model is a statistical model that contains more parameters than can be justified by the data.
https://qph.fs.quoracdn.net/main-qimg-412c8556aacf7e25b86bba63e9e67ac6-c
There are plenty of illustrations of overfitting, but for instance, this 2d plot represents the different functions that would have been learned for a binary classification task. Because the function on the right has too many parameters, it learns wrongs data patterns that don't generalize properly.

GridSearchCV: based on mean_test_score results, predict should perform much worse, but it does not

I am trying to evaluate the performance of a regressor by means of GridSearchCV. In my implementation cv is an int, so I'm applying the K-fold validation method. Looking at cv_results_['mean_test_score'],
the best mean score on the k-fold unseen data is around 0.7, while the train scores are much higher, like 0.999. This is very normal, and I'm ok with that.
Well, following the reasoning behind this concept, when I apply the best_estimator_ on the whole data set, I expect to see at least some part of the data predicted not perfectly, right? Instead, the numerical deviations between the predicted quantities and the real values are near zero for all datapoints. And this smells of overfitting.
I don't understand that, because if I remove a small part of the data and apply GridSearchCV to the remaining part, I find almost identical results as above, but the best regressor applied to the totally unseen data predicts with much higher errors, like 10%, 30% or 50%. Which is what I expected, at least for some points, fitting GridSearchCV on the whole set, based on the results of k-fold test sets.
Now, I understand that this forces the predictor to see all datapoints, but the best estimator is the result of k fits, each of them never saw 1/k fraction of data. Being the mean_test_score the average between these k scores, I expect to see a bunch of predictions (depending on cv value) which show errors distributed around a mean error that justifies a 0.7 score.
The refit=True parameter of GridSearchCV makes the estimator with the found best set of hyperparameters be refit on the full data. So if your training error is almost zero in the CV folds, you would expect it to be near zero in the best_estimator_ as well.

Comparing a Poisson Regression to a logistic Regression

I have data which has an associated binary outcome variable. Naturally I ran a logistic regression in order to see parameter estimates and odds ratios. I was curious though, to change this data from a binary outcome to count data. Then I ran a poisson regression (and negative binomial regression) on the count data.
I have no idea of how to compare these different models though, all comparisons I see seem to only be concerned with nested models.
How would you go about deciding on the best model to use in this situation?
Essentially both models will be roughly equal. What really matters is what is your objective- what you really want to predict. If you want to determine how many of cases are good or bad (1 or 0), then you go for logistic regression. If you are really interested on how much the cases are going to do (counts) then do poisson.
In other words, the only difference between these two models is the logistic transformation and the fact that logistic regression tries to minimize the misclassification error (-2 log likelihood) .To put it simply, even if you run a linear regression (OLS) on the binary outcome, you should not see big differences from your logistic model apart from the fact that the results may not be between 0 and 1 (e.g. the Area under the RoC curve will be similar to the logistic model) .
To sum up, don't worry about which of these two models is better, they should be roughly the same in the way the capture your features' information. Just think what makes more sense to optimize, counts or probabilties. The answer might have been different if you were considering non-linear models (e.g random forests or neural networks etc), but the two you are considering are both (almost) linear- so don't worry about it.
One thing to consider is the sample design. If you are using a case-control study, then logistic regression is the way to go because of its logit link function, rather than log of ratios as in Poisson regression. This is because, where there is an oversampling of cases such as in case-control study, odds ratio is unbiased.

Test error lower than training error

Would appreciate your input on this. I am constructing a regression model with the help of genetic programming.
If my RMSE on test data is (much) lower than my RMSE on training data for a 1:5 ratio of data, should I be worried?
The test data is drawn randomly without replacement from a set of 24 data points. The model was built using genetic programming technique so the number of features, modeling framework etc vary as I minimize the training RMSE regularized by the number of nodes in the GP tree.
Is the model underfitted? Or should I have minimized MSE instead of RMSE (I thought it would be the same as MSE is positive and the minimum of MSE would coincide with the minimum of RMSE assuming the optimizer is good enough to find the minimum)?
Tks
So your model is trained on 20 out of 24 data points and tested on the 4 remaining data points?
To me it sounds like you need (much) more data, so you can have a larger train and test sets. I'm not surprised by the low performance on your test set as it seems that your model wasn't able to learn from such few data. As a rule of thumb, for machine learning you can never have enough data. Is it a possibility to gather a larger dataset?

Resources