How to split pytorch dataset with respect to labels? - pytorch

I need to split the CIFAR10 dataset by category so that I can create a smaller sample with the same number of samples for each category.
How can I best accomplish this?

import numpy
sorted_by_value = [0]*10
for i in range(10):
sorted_by_value[i] =(train.data[numpy.where(numpy.array(train.targets) == i)])
numpy.random.shuffle(sorted_by_value[i])
For any dataset, you can just replace 10, with the number of categories, then you should be fine.

Related

Removing the redundant feature from classification dataset ( make_classification )

In the make_classification method,
X,y = make_classification(n_samples=10, n_features=8, n_informative=7, n_redundant=1, n_repeated=0 , n_classes=2,random_state=6)
Docstring about n_redundant: The number of redundant features. These features are generated as
random linear combinations of the informative features.
Docstring about n_repeated: The number of duplicated features, drawn randomly from the informative
n_repeated features are picked easily as they are highly correlated with informative features.
The docstring for repeated and redundant features indicates that both are drawn from informative features.
My question is: how redundant features can be removed/highlighted, what are their characteristics.
Attached is the correlation heatmap among all the features, Which feature in the image is redundant.
Please help.
To check how many independent columns use np.linalg.matrix_rank(X)
To find indices of linearly independent rows of matrix X use sympy.Matrix(X).rref()
DEMO
Generate dataset and check number of independent columns (matrix rank):
from sklearn.datasets import make_classification
from sympy import Matrix
X, _ = make_classification(
n_samples=10, n_features=8, n_redundant=2,random_state=6
)
np.linalg.matrix_rank(X, tol=1e-3)
# 6
Find indices of linearly independent columns:
_, inds = Matrix(X).rref(iszerofunc=lambda x: abs(x)<1e-3)
inds
#(0, 1, 2, 3, 6, 7)
Remove dependent columns and check matrix rank (num of independent columns):
#linearly independent
X_independent = X[:,inds]
assert np.linalg.matrix_rank(X_independent, tol=1e-3) == X_independent.shape[1]

How to get a specific sample from pytorch DataLoader?

In Pytorch, is there any way of loading a specific single sample using the torch.utils.data.DataLoader class? I'd like to do some testing with it.
The tutorial uses
trainloader = torch.utils.data.DataLoader(...)
images, labels = next(iter(trainloader))
to fetch a random batch of samples. Is there are way, using DataLoader, to get a specific sample?
Cheers
Turn off the shuffle in DataLoader
Use batch_size to calculate the batch in which the desired sample you are looking for falls in
Iterate to the desired batch
Code
import torch
import numpy as np
import itertools
X= np.arange(100)
batch_size = 2
dataloader = torch.utils.data.DataLoader(X, batch_size=batch_size, shuffle=False)
sample_at = 5
k = int(np.floor(sample_at/batch_size))
my_sample = next(itertools.islice(dataloader, k, None))
print (my_sample)
Output:
tensor([4, 5])
if you want to get a specific signle sample from your dataset you can
you should check Subset class.(https://pytorch.org/docs/stable/data.html#torch.utils.data.Subset)
something like this:
indices = [0,1,2] # select your indices here as a list
subset = torch.utils.data.Subset(train_set, indices)
trainloader = DataLoader(subset , batch_size = 16 , shuffle =False) #set shuffle to False
for image , label in trainloader:
print(image.size() , '\t' , label.size())
print(image[0], '\t' , label[0]) # index the specific sample
here is a useful link if you want to learn more about the Pytorch data loading utility
(https://pytorch.org/docs/stable/data.html)

How to oversample image dataset using Python?

I am working on a multiclass classification problem with an unbalanced dataset of images(different class). I tried imblearn library, but it is not working on the image dataset.
I have a dataset of images belonging to 3 class namely A,B,C. A has 1000 data, B has 300 and C has 100. I want to oversample class B and C, so that I can avoid data imbalance. Please let me know how to oversample the image dataset using python.
Actually, it seems imblearn.over_sampling resampling just 2d dims inputs. So one way to oversampling your image dataset by this library is to use reshaping alongside with it, you can:
reshape your images
oversample them
again reshape the new dataset to
the first dims
consider you have an image dataset of size (5000, 28, 28, 3) and dtype of nd.array, following the above instructions, you can use the solution below:
# X : current_dataset
# y : labels
from imblearn.over_sampling import RandomOverSampler
reshaped_X = X.reshape(X.shape[0],-1)
#oversampling
oversample = RandomOverSampler()
oversampled_X, oversampled_y = oversample.fit_resample(reshaped_X , y)
# reshaping X back to the first dims
new_X = oversampled_X.reshape(-1,28,28,3)
hope that was helpful!

Visualise word2vec generated from gensim using t-sne

I have trained a doc2vec and corresponding word2vec on my own corpus using gensim. I want to visualise the word2vec using t-sne with the words. As in, each dot in the figure has the "word" also with it.
I looked at a similar question here : t-sne on word2vec
Following it, I have this code :
import gensim
import gensim.models as g
from sklearn.manifold import TSNE
import re
import matplotlib.pyplot as plt
modelPath="/Users/tarun/Desktop/PE/doc2vec/model3_100_newCorpus60_1min_6window_100trainEpoch.bin"
model = g.Doc2Vec.load(modelPath)
X = model[model.wv.vocab]
print len(X)
print X[0]
tsne = TSNE(n_components=2)
X_tsne = tsne.fit_transform(X[:1000,:])
plt.scatter(X_tsne[:, 0], X_tsne[:, 1])
plt.show()
This gives a figure with dots but no words. That is I don't know which dot is representative of which word. How can I display the word with the dot?
Two parts to the answer: how to get the word labels, and how to plot the labels on a scatterplot.
Word labels in gensim's word2vec
model.wv.vocab is a dict of {word: object of numeric vector}. To load the data into X for t-SNE, I made one change.
vocab = list(model.wv.key_to_index)
X = model.wv[vocab]
This accomplishes two things: (1) it gets you a standalone vocab list for the final dataframe to plot, and (2) when you index model, you can be sure that you know the order of the words.
Proceed as before with
tsne = TSNE(n_components=2)
X_tsne = tsne.fit_transform(X)
Now let's put X_tsne together with the vocab list. This is easy with pandas, so import pandas as pd if you don't have that yet.
df = pd.DataFrame(X_tsne, index=vocab, columns=['x', 'y'])
The vocab words are the indices of the dataframe now.
I don't have your dataset, but in the other SO you mentioned, an example df that uses sklearn's newsgroups would look something like
x y
politics -1.524653e+20 -1.113538e+20
worry 2.065890e+19 1.403432e+20
mu -1.333273e+21 -5.648459e+20
format -4.780181e+19 2.397271e+19
recommended 8.694375e+20 1.358602e+21
arguing -4.903531e+19 4.734511e+20
or -3.658189e+19 -1.088200e+20
above 1.126082e+19 -4.933230e+19
Scatterplot
I like the object-oriented approach to matplotlib, so this starts out a little different.
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.scatter(df['x'], df['y'])
Lastly, the annotate method will label coordinates. The first two arguments are the text label and the 2-tuple. Using iterrows(), this can be very succinct:
for word, pos in df.iterrows():
ax.annotate(word, pos)
[Thanks to Ricardo in the comments for this suggestion.]
Then do plt.show() or fig.savefig(). Depending on your data, you'll probably have to mess with ax.set_xlim and ax.set_ylim to see into a dense cloud. This is the newsgroup example without any tweaking:
You can modify dot size, color, etc., too. Happy fine-tuning!
With the following, you can convert your model to a TSV and then use this page for visualization.
with open(self.word_tensors_TSV, 'bw') as file_vector, open(self.word_meta_TSV, 'bw') as file_metadata:
for word in model.wv.vocab:
file_metadata.write((word + '\n').encode('utf-8', errors='replace'))
vector_row = '\t'.join(str(x) for x in model[word])
file_vector.write((vector_row + '\n').encode('utf-8', errors='replace'))
:)

How to find key trees/features from a trained random forest?

I am using Scikit-Learn Random Forest Classifier and trying to extract the meaningful trees/features in order to better understand the prediction results.
I found this method which seems relevant in the documention (http://scikit-learn.org/dev/modules/generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.ensemble.RandomForestClassifier.get_params), but couldn't find an example how to use it.
I am also hoping to visualize those trees if possible, any relevant code would be great.
Thank you!
I think you're looking for Forest.feature_importances_. This allows you to see what the relative importance of each input feature is to your final model. Here's a simple example.
import random
import numpy as np
from sklearn.ensemble import RandomForestClassifier
#Lets set up a training dataset. We'll make 100 entries, each with 19 features and
#each row classified as either 0 and 1. We'll control the first 3 features to artificially
#set the first 3 features of rows classified as "1" to a set value, so that we know these are the "important" features. If we do it right, the model should point out these three as important.
#The rest of the features will just be noise.
train_data = [] ##must be all floats.
for x in range(100):
line = []
if random.random()>0.5:
line.append(1.0)
#Let's add 3 features that we know indicate a row classified as "1".
line.append(.77)
line.append(.33)
line.append(.55)
for x in range(16):#fill in the rest with noise
line.append(random.random())
else:
#this is a "0" row, so fill it with noise.
line.append(0.0)
for x in range(19):
line.append(random.random())
train_data.append(line)
train_data = np.array(train_data)
# Create the random forest object which will include all the parameters
# for the fit. Make sure to set compute_importances=True
Forest = RandomForestClassifier(n_estimators = 100, compute_importances=True)
# Fit the training data to the training output and create the decision
# trees. This tells the model that the first column in our data is the classification,
# and the rest of the columns are the features.
Forest = Forest.fit(train_data[0::,1::],train_data[0::,0])
#now you can see the importance of each feature in Forest.feature_importances_
# these values will all add up to one. Let's call the "important" ones the ones that are above average.
important_features = []
for x,i in enumerate(Forest.feature_importances_):
if i>np.average(Forest.feature_importances_):
important_features.append(str(x))
print 'Most important features:',', '.join(important_features)
#we see that the model correctly detected that the first three features are the most important, just as we expected!
To get the relative feature importances, read the relevant section of the documentation along with the code of the linked examples in that same section.
The trees themselves are stored in the estimators_ attribute of the random forest instance (only after the call to the fit method). Now to extract a "key tree" one would first require you to define what it is and what you are expecting to do with it.
You could rank the individual trees by computing there score on held out test set but I don't know what expect to get out of that.
Do you want to prune the forest to make it faster to predict by reducing the number of trees without decreasing the aggregate forest accuracy?
Here is how I visualize the tree:
First make the model after you have done all of the preprocessing, splitting, etc:
# max number of trees = 100
from sklearn.ensemble import RandomForestClassifier
classifier = RandomForestClassifier(n_estimators = 100, criterion = 'entropy', random_state = 0)
classifier.fit(X_train, y_train)
Make predictions:
# Predicting the Test set results
y_pred = classifier.predict(X_test)
Then make the plot of importances. The variable dataset is the name of the original dataframe.
# get importances from RF
importances = classifier.feature_importances_
# then sort them descending
indices = np.argsort(importances)
# get the features from the original data set
features = dataset.columns[0:26]
# plot them with a horizontal bar chart
plt.figure(1)
plt.title('Feature Importances')
plt.barh(range(len(indices)), importances[indices], color='b', align='center')
plt.yticks(range(len(indices)), features[indices])
plt.xlabel('Relative Importance')
This yields a plot as below:

Resources