Ryan Joiner Normality Test P-value - statistics

i tried a lot to calculate the Ryan Joiner(RJ) P-Value. is there any method or formula to calculate RJ P-Value.
i found how to calculate RJ value but unable to find the manual calcuation part for RJ P-Value. Minitab is calculating by some startegy . i want to know that how calculate it in manually.
please support me on this.

The test statistic RJ needs to be compared to a critical value CV in order to make a determination of whether to reject or fail to reject the null hypothesis.
The value of CV depends on the sample size and confidence level desired, and the values are empirically derived: generate large numbers of normally distributed datasets for each sample size n, calculate RJ statistic for each, then CV for a=0.10 is the 10th percentile value of RJ.
Sidenote: For some reason I'm seeing a 90% confidence level used many places for Ryan-Joiner, when a 95% confidence is commonly used for other normality tests. I'm not sure why.
I recommend reading the original Ryan-Joiner 1976 paper:
https://www.additive-net.de/de/component/jdownloads/send/70-support/236-normal-probability-plots-and-tests-for-normality-thomas-a-ryan-jr-bryan-l-joiner
In that paper, the following critical value equations were empirically derived (I wrote out in python for convenience):
def rj_critical_value(n, a=0.10)
if a == 0.1:
return 1.0071 - (0.1371 / sqrt(n)) - (0.3682 / n) + (0.7780 / n**2)
elif a == 0.05:
return 1.0063 - (0.1288 / sqrt(n)) - (0.6118 / n) + (1.3505 / n**2)
elif a == 0.01:
return 0.9963 - (0.0211 / sqrt(n)) - (1.4106 / n) + (3.1791 / n**2)
else:
raise Exception("a must be one of [0.10, 0.05, 0.01]")
The RJ test statistic then needs to be compared to that critical value:
If RJ < CV, then the determination is NOT NORMAL.
If RJ > CV, then the determination is NORMAL.
Minitab is going one step further - working backwards to determine the value of a at which CV == RJ. This value would be the p-value you're referencing in your original question.

Related

If we rolled the die (6-sided) 1000 time, what is the range of times we'd expect to see a 1 rolled?

I got a question listed below about the confidence interval for rolling a die 1000 times. I'm assuming that the question is using Binomial Distribution but not sure if I'm correct. I guess in the solution, the probability 0.94 comes from 1-0.06. But I'm not sure if we need the probability in this interval, except it is only used for the Z-score, 1.88. Could I assume this question like this?
Question:
Assume that we are okay with accidentally rejecting H0​ 6% of the time, assuming H0​ is true.
If we rolled the die (6-sided) 1000 times, what is the range of times we'd expect to see a 1 rolled? (H0​ is the die is fair.)
Answer:
The interval is (144.50135805579743, 188.8319752775359), with probability = 0.94, mu = 166.67, sigma = 11.785113019775793
We can treat this as a binomial distribution with a success chance p of 1/6 and number of trials n = 1000.
Mean value of such a distribution is np, and variance is np(1-p). sigma (or std) is sqrt(variance).
However, finding the interval is not so trivial since it requires an inverse CDF. The solution apparently uses normal approximation (p is low, n is high) with a Z-score table (like https://www.math.arizona.edu/~rsims/ma464/standardnormaltable.pdf) thus range = mu +- 1.88 * sigma. Obviously, binomial is discrete, so there cannot be '145.5 times' of rolling 1. scipy.stats.binom.ppf(0.97, 1000, 1/6) and scipy.stats.binom.ppf(0.03, 1000, 1/6) yield a sane 145..189 range.

Word2Vec Subsampling -- Implementation

I am implementing the Skipgram model, both in Pytorch and Tensorflow2. I am having doubts about the implementation of subsampling of frequent words. Verbatim from the paper, the probability of subsampling word wi is computed as
where t is a custom threshold (usually, a small value such as 0.0001) and f is the frequency of the word in the document. Although the authors implemented it in a different, but almost equivalent way, let's stick with this definition.
When computing the P(wi), we can end up with negative values. For example, assume we have 100 words, and one of them appears extremely more often than others (as it is the case for my dataset).
import numpy as np
import seaborn as sns
np.random.seed(12345)
# generate counts in [1, 20]
counts = np.random.randint(low=1, high=20, size=99)
# add an extremely bigger count
counts = np.insert(counts, 0, 100000)
# compute frequencies
f = counts/counts.sum()
# define threshold as in paper
t = 0.0001
# compute probabilities as in paper
probs = 1 - np.sqrt(t/f)
sns.distplot(probs);
Q: What is the correct way to implement subsampling using this "probability"?
As an additional info, I have seen that in keras the function keras.preprocessing.sequence.make_sampling_table takes a different approach:
def make_sampling_table(size, sampling_factor=1e-5):
"""Generates a word rank-based probabilistic sampling table.
Used for generating the `sampling_table` argument for `skipgrams`.
`sampling_table[i]` is the probability of sampling
the i-th most common word in a dataset
(more common words should be sampled less frequently, for balance).
The sampling probabilities are generated according
to the sampling distribution used in word2vec:
```
p(word) = (min(1, sqrt(word_frequency / sampling_factor) /
(word_frequency / sampling_factor)))
```
We assume that the word frequencies follow Zipf's law (s=1) to derive
a numerical approximation of frequency(rank):
`frequency(rank) ~ 1/(rank * (log(rank) + gamma) + 1/2 - 1/(12*rank))`
where `gamma` is the Euler-Mascheroni constant.
# Arguments
size: Int, number of possible words to sample.
sampling_factor: The sampling factor in the word2vec formula.
# Returns
A 1D Numpy array of length `size` where the ith entry
is the probability that a word of rank i should be sampled.
"""
gamma = 0.577
rank = np.arange(size)
rank[0] = 1
inv_fq = rank * (np.log(rank) + gamma) + 0.5 - 1. / (12. * rank)
f = sampling_factor * inv_fq
return np.minimum(1., f / np.sqrt(f))
I tend to trust deployed code more than paper write-ups, especially in a case like word2vec, where the original authors' word2vec.c code released by the paper's authors has been widely used & served as the template for other implementations. If we look at its subsampling mechanism...
if (sample > 0) {
real ran = (sqrt(vocab[word].cn / (sample * train_words)) + 1) * (sample * train_words) / vocab[word].cn;
next_random = next_random * (unsigned long long)25214903917 + 11;
if (ran < (next_random & 0xFFFF) / (real)65536) continue;
}
...we see that those words with tiny counts (.cn) that could give negative values in the original formula instead here give values greater-than 1.0, and thus can never be less than the long-random-masked-and-scaled to never be more than 1.0 ((next_random & 0xFFFF) / (real)65536). So, it seems the authors' intent was for all negative-values of the original formula to mean "never discard".
As per the keras make_sampling_table() comment & implementation, they're not consulting the actual word-frequencies at all. Instead, they're assuming a Zipf-like distribution based on word-rank order to synthesize a simulated word-frequency.
If their assumptions were to hold – the related words are from a natural-language corpus with a Zipf-like frequency-distribution – then I'd expect their sampling probabilities to be close to down-sampling probabilities that would have been calculated from true frequency information. And that's probably "close enough" for most purposes.
I'm not sure why they chose this approximation. Perhaps other aspects of their usual processes have not maintained true frequencies through to this step, and they're expecting to always be working with natural-language texts, where the assumed frequencies will be generally true.
(As luck would have it, and because people often want to impute frequencies to public sets of word-vectors which have dropped the true counts but are still sorted from most- to least-frequent, just a few days ago I wrote an answer about simulating a fake-but-plausible distribution using Zipf's law – similar to what this keras code is doing.)
But, if you're working with data that doesn't match their assumptions (as with your synthetic or described datasets), their sampling-probabilities will be quite different than what you would calculate yourself, with any form of the original formula that uses true word frequencies.
In particular, imagine a distribution with one token a million times, then a hundred tokens all appearing just 10 times each. Those hundred tokens' order in the "rank" list is arbitrary – truly, they're all tied in frequency. But the simulation-based approach, by fitting a Zipfian distribution on that ordering, will in fact be sampling each of them very differently. The one 10-occurrence word lucky enough to be in the 2nd rank position will be far more downsampled, as if it were far more frequent. And the 1st-rank "tall head" value, by having its true frequency *under-*approximated, will be less down-sampled than otherwise. Neither of those effects seem beneficial, or in the spirit of the frequent-word-downsampling option - which should only "thin out" very-frequent words, and in all cases leave words of the same frequency as each other in the original corpus roughly equivalently present to each other in the down-sampled corpus.
So for your case, I would go with the original formula (probability-of-discarding-that-requires-special-handling-of-negative-values), or the word2vec.c practical/inverted implementation (probability-of-keeping-that-saturates-at-1.0), rather than the keras-style approximation.
(As a totally-separate note that nonetheless may be relevant for your dataset/purposes, if you're using negative-sampling: there's another parameter controlling the relative sampling of negative examples, often fixed at 0.75 in early implementations, that one paper has suggested can usefully vary for non-natural-language token distributions & recommendation-related end-uses. This parameter is named ns_exponent in the Python gensim implementation, but simply a fixed power value internal to a sampling-table pre-calculation in the original word2vec.c code.)

Bayesian Linear Regression with PyMC3 and a large dataset - bracket nesting level exceeded maximum and slow performance

I would like to use a Bayesian multivariate linear regression to estimate the strength of players in team sports (e.g. ice hockey, basketball or soccer). For that purpose, I create a matrix, X, containing the players as columns and the matches as rows. For each match the player entry is either 1 (player plays in the home team), -1 (player plays in the away team) or 0 (player does not take part in this game). The dependent variable Y is defined as the scoring differences for both teams in each match (Score_home_team - Score_away_team).
Thus, the number of parameters will be quite large for one season (e.g. X is defined by 300 rows x 450 columns; i.e. 450 player coefficients + y-intercept). When running the fit I came across a compilation error:
('Compilation failed (return status=1): /Users/me/.theano/compiledir_Darwin-17.7.0-x86_64-i386-64bit-i386-3.6.5-64/tmpdxxc2379/mod.cpp:27598:32: fatal error: bracket nesting level exceeded maximum of 256.
I tried to handle this error by setting:
theano.config.gcc.cxxflags = "-fbracket-depth=1024"
Now, the sampling is running. However, it is so slow that even if I take only 35 of 300 rows the sampling is not completed within 20 minutes.
This is my basic code:
import pymc3 as pm
basic_model = pm.Model()
with basic_model:
# Priors for beta coefficients - these are the coefficients of the players
dict_betas = {}
for col in X.columns:
dict_betas[col] = pm.Normal(col, mu=0, sd=10)
# Priors for unknown model parameters
alpha = pm.Normal('alpha', mu=0, sd=10) # alpha is the y-intercept
sigma = pm.HalfNormal('sigma', sd=1) # standard deviation of the observations
# Expected value of outcome
mu = alpha
for col in X.columns:
mu = mu + dict_betas[col] * X[col] # mu = alpha + beta_1 * Player_1 + beta_2 * Player_2 + ...
# Likelihood (sampling distribution) of observations
Y_obs = pm.Normal('Y_obs', mu=mu, sd=sigma, observed=Y)
The instantiation of the model runs within one minute for the large dataset. I do the sampling using:
with basic_model:
# draw 500 posterior samples
trace = pm.sample(500)
The sampling is completed for small sample sizes (e.g. 9 rows, 80 columns) within 7 minutes. However, the time is increasing substantially with increasing sample size.
Any suggestions how I can get this Bayesian linear regression to run in a feasible amount of time? Are these kind of problems doable using PyMC3 (remember I came across a bracket nesting error)? I saw in a recent publication that this kind of analysis is doable in R (https://arxiv.org/pdf/1810.08032.pdf). Therefore, I guess it should also somehow work with Python 3.
Any help is appreciated!
Eliminating the for loops should improve performance and might also take care of the nesting issue you are reporting. Theano TensorVariables and the PyMC3 random variables that derive from them are already multidimensional and support linear algebra operations. Try changing your code to something along the lines of
beta = pm.Normal('beta', mu=0, sd=10, shape=X.shape[1])
...
mu = alpha + pm.math.dot(X, beta)
...
If you need specify different prior values for mu and/or sd, those arguments accept anything that theano.tensor.as_tensor_variable() accepts, so you can pass a list or numpy array.
I highly recommend getting familiar with the theano.tensor and pymc3.math operations since sometimes you must use these to properly manipulate random variables, and in general it should lead to more efficient code.

How to calculate the standard deviation from a histogram? (Python, Matplotlib)

Let's say I have a data set and used matplotlib to draw a histogram of said data set.
n, bins, patches = plt.hist(data, normed=1)
How do I calculate the standard deviation, using the n and bins values that hist() returns? I'm currently doing this to calculate the mean:
s = 0
for i in range(len(n)):
s += n[i] * ((bins[i] + bins[i+1]) / 2)
mean = s / numpy.sum(n)
which seems to work fine as I get pretty accurate results. However, if I try to calculate the standard deviation like this:
t = 0
for i in range(len(n)):
t += (bins[i] - mean)**2
std = np.sqrt(t / numpy.sum(n))
my results are way off from what numpy.std(data) returns. Replacing the left bin limits with the central point of each bin doesn't change this either. I have the feeling that the problem is that the n and bins values don't actually contain any information on how the individual data points are distributed within each bin, but the assignment I'm working on clearly demands that I use them to calculate the standard deviation.
You haven't weighted the contribution of each bin with n[i]. Change the increment of t to
t += n[i]*(bins[i] - mean)**2
By the way, you can simplify (and speed up) your calculation by using numpy.average with the weights argument.
Here's an example. First, generate some data to work with. We'll compute the sample mean, variance and standard deviation of the input before computing the histogram.
In [54]: x = np.random.normal(loc=10, scale=2, size=1000)
In [55]: x.mean()
Out[55]: 9.9760798903061847
In [56]: x.var()
Out[56]: 3.7673459904902025
In [57]: x.std()
Out[57]: 1.9409652213499866
I'll use numpy.histogram to compute the histogram:
In [58]: n, bins = np.histogram(x)
mids is the midpoints of the bins; it has the same length as n:
In [59]: mids = 0.5*(bins[1:] + bins[:-1])
The estimate of the mean is the weighted average of mids:
In [60]: mean = np.average(mids, weights=n)
In [61]: mean
Out[61]: 9.9763028267760312
In this case, it is pretty close to the mean of the original data.
The estimated variance is the weighted average of the squared difference from the mean:
In [62]: var = np.average((mids - mean)**2, weights=n)
In [63]: var
Out[63]: 3.8715035807387328
In [64]: np.sqrt(var)
Out[64]: 1.9676136767004677
That estimate is within 2% of the actual sample standard deviation.
The following answer is equivalent to Warren Weckesser's, but maybe more familiar to those who prefer to want mean as the expected value:
counts, bins = np.histogram(x)
mids = 0.5*(bins[1:] + bins[:-1])
probs = counts / np.sum(counts)
mean = np.sum(probs * mids)
sd = np.sqrt(np.sum(probs * (mids - mean)**2))
Do take note in certain context you may want the unbiased sample variance where the weights are not normalized by N but N-1.

How to avoid impression bias when calculate the ctr?

When we train a ctr(click through rate) model, sometimes we need calcute the real ctr from the history data, like this
#(click)
ctr = ----------------
#(impressions)
We know that, if the number of impressions is too small, the calculted ctr is not real. So we always set a threshold to filter out the large enough impressions.
But we know that the higher impressions, the higher confidence for the ctr. Then my question is that: Is there a impressions-normalized statistic method to calculate the ctr?
Thanks!
You probably need a representation of confidence interval for your estimated ctr. Wilson score interval is a good one to try.
You need below stats to calculate the confidence score:
\hat p is the observed ctr (fraction of #clicked vs #impressions)
n is the total number of impressions
zα/2 is the (1-α/2) quantile of the standard normal distribution
A simple implementation in python is shown below, I use z(1-α/2)=1.96 which corresponds to a 95% confidence interval. I attached 3 test results at the end of the code.
# clicks # impressions # conf interval
2 10 (0.07, 0.45)
20 100 (0.14, 0.27)
200 1000 (0.18, 0.22)
Now you can set up some threshold to use the calculated confidence interval.
from math import sqrt
def confidence(clicks, impressions):
n = impressions
if n == 0: return 0
z = 1.96 #1.96 -> 95% confidence
phat = float(clicks) / n
denorm = 1. + (z*z/n)
enum1 = phat + z*z/(2*n)
enum2 = z * sqrt(phat*(1-phat)/n + z*z/(4*n*n))
return (enum1-enum2)/denorm, (enum1+enum2)/denorm
def wilson(clicks, impressions):
if impressions == 0:
return 0
else:
return confidence(clicks, impressions)
if __name__ == '__main__':
print wilson(2,10)
print wilson(20,100)
print wilson(200,1000)
"""
--------------------
results:
(0.07048879557839793, 0.4518041980521754)
(0.14384999046998084, 0.27112660859398174)
(0.1805388068716823, 0.22099327100894336)
"""
If you treat this as a binomial parameter, you can do Bayesian estimation. If your prior on ctr is uniform (a Beta distribution with parameters (1,1)) then your posterior is Beta(1+#click, 1+#impressions-#click). Your posterior mean is #click+1 / #impressions+2 if you want a single summary statistic of this posterior, but you probably don't, and here's why:
I don't know what your method for determining whether ctr is high enough, but let's say you're interested in everything with ctr > 0.9. You can then use the cumulative density function of the beta distribution to look at what proportion of probability mass is over the 0.9 threshold (this will just be 1 - the cdf at 0.9). In this way, your threshold will naturally incorporate uncertainty about the estimate because of limited sample size.
There are many ways to calculate this confidence interval. An alternative to the Wilson Score is the Clopper-Perrson interval, which I found useful in spreadsheets.
Upper Bound Equation
Lower Bound Equation
Where
B() is the the Inverse Beta Distribution
alpha is the confidence level error (e.g for 95% confidence-level, alpha is 5%)
n is the number of samples (e.g. impressions)
x is the number of successes (e.g. clicks)
In Excel an implementation for B() is provided by the BETA.INV formula.
There is no equivalent formula for B() in Google Sheets, but a Google Apps Script custom function can be adapted from the JavaScript Statistical Library (e.g search github for jstat)

Resources