Why doesn't my if-statements return the right numbers? - rounding

First of all, this is my first week trying out C# or any other programming language for that matter, also my first post here on Stackoverflow!
Been working on this change calculator for a while now, trying to get it to round the result to either 0 if its <.25, 0.50 if it's between .25 and .75 and 1 if it's >.75. Seems like it's ignoring my if-statements, And on top of that the result I get isn't correct either. Some calculations ends up being negative, which I can't figure out why :/
double summa0 = vara - kontant; //item - change
var extrakt = (int)summa0; //removes decimals out of summa0 = 107
var avrundsSumma = summa0 - extrakt; //<--- extracts the decimals out of summa0
if (avrundsSumma < 0.25f)
{
avrundsSumma = Math.Floor(avrundsSumma);
}
else if (avrundsSumma > 0.75f) //Runs the decimals through if-statements
{
avrundsSumma = Math.Ceiling(avrundsSumma);
}
else
{
avrundsSumma = 0.5;
} // = in this case the result should be 1
double summa = extrakt + avrundsSumma; // 107 + 1 = 108
double attBetala = kontant - summa; // 500 - 108 = 392
Since I'm very new to this it's hard to know exactly which part of the code is causing the issue. When I run the code in CMD I get a negative result from "double summa = extrakt + avrundsSumma; // 107 + 1 = 108"
So instead of 108 I get -108.
Not sure what you mean by "Hard code the values" either :o

Related

find wheher string value is integer or decimal kotlin

I have dynamic string value which i get from server response ( eg: a = 18 or a = 18.75) . I need to find whether a value has decimal point or not in kotlin. i need to display it in discount_price
if(product[position].discounted_price.) {
mrp.text = "₹" + product.get(position).price
mrp.paintFlags = Paint.STRIKE_THRU_TEXT_FLAG
sellingprice.text = "₹" + product.get(position).discounted_price
tv_cartvariant.text = variant.cart_count.toString()
} else {
mrp.text = "₹" + product.get(position).price + ".00"
mrp.paintFlags = Paint.STRIKE_THRU_TEXT_FLAG
sellingprice.text = "₹" + product.get(position).discounted_price + ".00"
tv_cartvariant.text = variant.cart_count.toString()
}
"%.2f".format(price.toDouble()) automatically formats the price with 2 decimal places.
Examples:
"%.2f".format(2.toDouble()) returns 2.00
"%.2f".format(2.36.toDouble()) returns 2.36
"%.2f".format(2.9244.toDouble()) returns 2.92
"%.2f".format(2.1093.toDouble()) returns 2.11
If I understood your question correctly, then try:
if(product[position].discounted_price.toString().contains('.') {
// price has decimal dot
} else {
// price is probably integer
}
It seems that you want to show prices with 2 decimal places, this can be done as following, no need to check for dot
mrp.text = "₹" + "%.2f".format(product.get(position).price.toDouble())
mrp.paintFlags = Paint.STRIKE_THRU_TEXT_FLAG
sellingprice.text = "₹" + "%.2f".format(product.get(position).discounted_price.toDouble())
tv_cartvariant.text = variant.cart_count.toString()

Call to MongoDB in Express fails when using varibles but work with literals [duplicate]

How do I convert a string to an integer in JavaScript?
The simplest way would be to use the native Number function:
var x = Number("1000")
If that doesn't work for you, then there are the parseInt, unary plus, parseFloat with floor, and Math.round methods.
parseInt()
var x = parseInt("1000", 10); // You want to use radix 10
// So you get a decimal number even with a leading 0 and an old browser ([IE8, Firefox 20, Chrome 22 and older][1])
Unary plus
If your string is already in the form of an integer:
var x = +"1000";
floor()
If your string is or might be a float and you want an integer:
var x = Math.floor("1000.01"); // floor() automatically converts string to number
Or, if you're going to be using Math.floor several times:
var floor = Math.floor;
var x = floor("1000.01");
parseFloat()
If you're the type who forgets to put the radix in when you call parseInt, you can use parseFloat and round it however you like. Here I use floor.
var floor = Math.floor;
var x = floor(parseFloat("1000.01"));
round()
Interestingly, Math.round (like Math.floor) will do a string to number conversion, so if you want the number rounded (or if you have an integer in the string), this is a great way, maybe my favorite:
var round = Math.round;
var x = round("1000"); // Equivalent to round("1000", 0)
Try parseInt function:
var number = parseInt("10");
But there is a problem. If you try to convert "010" using parseInt function, it detects as octal number, and will return number 8. So, you need to specify a radix (from 2 to 36). In this case base 10.
parseInt(string, radix)
Example:
var result = parseInt("010", 10) == 10; // Returns true
var result = parseInt("010") == 10; // Returns false
Note that parseInt ignores bad data after parsing anything valid.
This guid will parse as 51:
var result = parseInt('51e3daf6-b521-446a-9f5b-a1bb4d8bac36', 10) == 51; // Returns true
There are two main ways to convert a string to a number in JavaScript. One way is to parse it and the other way is to change its type to a Number. All of the tricks in the other answers (e.g., unary plus) involve implicitly coercing the type of the string to a number. You can also do the same thing explicitly with the Number function.
Parsing
var parsed = parseInt("97", 10);
parseInt and parseFloat are the two functions used for parsing strings to numbers. Parsing will stop silently if it hits a character it doesn't recognise, which can be useful for parsing strings like "92px", but it's also somewhat dangerous, since it won't give you any kind of error on bad input, instead you'll get back NaN unless the string starts with a number. Whitespace at the beginning of the string is ignored. Here's an example of it doing something different to what you want, and giving no indication that anything went wrong:
var widgetsSold = parseInt("97,800", 10); // widgetsSold is now 97
It's good practice to always specify the radix as the second argument. In older browsers, if the string started with a 0, it would be interpreted as octal if the radix wasn't specified which took a lot of people by surprise. The behaviour for hexadecimal is triggered by having the string start with 0x if no radix is specified, e.g., 0xff. The standard actually changed with ECMAScript 5, so modern browsers no longer trigger octal when there's a leading 0 if no radix has been specified. parseInt understands radixes up to base 36, in which case both upper and lower case letters are treated as equivalent.
Changing the Type of a String to a Number
All of the other tricks mentioned above that don't use parseInt, involve implicitly coercing the string into a number. I prefer to do this explicitly,
var cast = Number("97");
This has different behavior to the parse methods (although it still ignores whitespace). It's more strict: if it doesn't understand the whole of the string than it returns NaN, so you can't use it for strings like 97px. Since you want a primitive number rather than a Number wrapper object, make sure you don't put new in front of the Number function.
Obviously, converting to a Number gives you a value that might be a float rather than an integer, so if you want an integer, you need to modify it. There are a few ways of doing this:
var rounded = Math.floor(Number("97.654")); // other options are Math.ceil, Math.round
var fixed = Number("97.654").toFixed(0); // rounded rather than truncated
var bitwised = Number("97.654")|0; // do not use for large numbers
Any bitwise operator (here I've done a bitwise or, but you could also do double negation as in an earlier answer or a bit shift) will convert the value to a 32 bit integer, and most of them will convert to a signed integer. Note that this will not do want you want for large integers. If the integer cannot be represented in 32 bits, it will wrap.
~~"3000000000.654" === -1294967296
// This is the same as
Number("3000000000.654")|0
"3000000000.654" >>> 0 === 3000000000 // unsigned right shift gives you an extra bit
"300000000000.654" >>> 0 === 3647256576 // but still fails with larger numbers
To work correctly with larger numbers, you should use the rounding methods
Math.floor("3000000000.654") === 3000000000
// This is the same as
Math.floor(Number("3000000000.654"))
Bear in mind that coercion understands exponential notation and Infinity, so 2e2 is 200 rather than NaN, while the parse methods don't.
Custom
It's unlikely that either of these methods do exactly what you want. For example, usually I would want an error thrown if parsing fails, and I don't need support for Infinity, exponentials or leading whitespace. Depending on your use case, sometimes it makes sense to write a custom conversion function.
Always check that the output of Number or one of the parse methods is the sort of number you expect. You will almost certainly want to use isNaN to make sure the number is not NaN (usually the only way you find out that the parse failed).
ParseInt() and + are different
parseInt("10.3456") // returns 10
+"10.3456" // returns 10.3456
Fastest
var x = "1000"*1;
Test
Here is little comparison of speed (macOS only)... :)
For Chrome, 'plus' and 'mul' are fastest (>700,000,00 op/sec), 'Math.floor' is slowest. For Firefox, 'plus' is slowest (!) 'mul' is fastest (>900,000,000 op/sec). In Safari 'parseInt' is fastest, 'number' is slowest (but results are quite similar, >13,000,000 <31,000,000). So Safari for cast string to int is more than 10x slower than other browsers. So the winner is 'mul' :)
You can run it on your browser by this link
https://jsperf.com/js-cast-str-to-number/1
I also tested var x = ~~"1000";. On Chrome and Safari, it is a little bit slower than var x = "1000"*1 (<1%), and on Firefox it is a little bit faster (<1%).
I use this way of converting string to number:
var str = "25"; // String
var number = str*1; // Number
So, when multiplying by 1, the value does not change, but JavaScript automatically returns a number.
But as it is shown below, this should be used if you are sure that the str is a number (or can be represented as a number), otherwise it will return NaN - not a number.
You can create simple function to use, e.g.,
function toNumber(str) {
return str*1;
}
Try parseInt.
var number = parseInt("10", 10); //number will have value of 10.
I love this trick:
~~"2.123"; //2
~~"5"; //5
The double bitwise negative drops off anything after the decimal point AND converts it to a number format. I've been told it's slightly faster than calling functions and whatnot, but I'm not entirely convinced.
Another method I just saw here (a question about the JavaScript >>> operator, which is a zero-fill right shift) which shows that shifting a number by 0 with this operator converts the number to a uint32 which is nice if you also want it unsigned. Again, this converts to an unsigned integer, which can lead to strange behaviors if you use a signed number.
"-2.123" >>> 0; // 4294967294
"2.123" >>> 0; // 2
"-5" >>> 0; // 4294967291
"5" >>> 0; // 5
In JavaScript, you can do the following:
ParseInt
parseInt("10.5") // Returns 10
Multiplying with 1
var s = "10";
s = s*1; // Returns 10
Using the unary operator (+)
var s = "10";
s = +s; // Returns 10
Using a bitwise operator
(Note: It starts to break after 2140000000. Example: ~~"2150000000" = -2144967296)
var s = "10.5";
s = ~~s; // Returns 10
Using Math.floor() or Math.ceil()
var s = "10";
s = Math.floor(s) || Math.ceil(s); // Returns 10
Please see the below example. It will help answer your question.
Example Result
parseInt("4") 4
parseInt("5aaa") 5
parseInt("4.33333") 4
parseInt("aaa"); NaN (means "Not a Number")
By using parseint function, it will only give op of integer present and not the string.
Beware if you use parseInt to convert a float in scientific notation!
For example:
parseInt("5.6e-14")
will result in
5
instead of
0
Also as a side note: MooTools has the function toInt() which is used on any native string (or float (or integer)).
"2".toInt() // 2
"2px".toInt() // 2
2.toInt() // 2
We can use +(stringOfNumber) instead of using parseInt(stringOfNumber).
Example: +("21") returns int of 21, like the parseInt("21").
We can use this unary "+" operator for parsing float too...
To convert a String into Integer, I recommend using parseFloat and not parseInt. Here's why:
Using parseFloat:
parseFloat('2.34cms') //Output: 2.34
parseFloat('12.5') //Output: 12.5
parseFloat('012.3') //Output: 12.3
Using parseInt:
parseInt('2.34cms') //Output: 2
parseInt('12.5') //Output: 12
parseInt('012.3') //Output: 12
So if you have noticed parseInt discards the values after the decimals, whereas parseFloat lets you work with floating point numbers and hence more suitable if you want to retain the values after decimals. Use parseInt if and only if you are sure that you want the integer value.
There are many ways in JavaScript to convert a string to a number value... All are simple and handy. Choose the way which one works for you:
var num = Number("999.5"); //999.5
var num = parseInt("999.5", 10); //999
var num = parseFloat("999.5"); //999.5
var num = +"999.5"; //999.5
Also, any Math operation converts them to number, for example...
var num = "999.5" / 1; //999.5
var num = "999.5" * 1; //999.5
var num = "999.5" - 1 + 1; //999.5
var num = "999.5" - 0; //999.5
var num = Math.floor("999.5"); //999
var num = ~~"999.5"; //999
My prefer way is using + sign, which is the elegant way to convert a string to number in JavaScript.
Try str - 0 to convert string to number.
> str = '0'
> str - 0
0
> str = '123'
> str - 0
123
> str = '-12'
> str - 0
-12
> str = 'asdf'
> str - 0
NaN
> str = '12.34'
> str - 0
12.34
Here are two links to compare the performance of several ways to convert string to int
https://jsperf.com/number-vs-parseint-vs-plus
http://phrogz.net/js/string_to_number.html
Here is the easiest solution
let myNumber = "123" | 0;
More easy solution
let myNumber = +"123";
In my opinion, no answer covers all edge cases as parsing a float should result in an error.
function parseInteger(value) {
if(value === '') return NaN;
const number = Number(value);
return Number.isInteger(number) ? number : NaN;
}
parseInteger("4") // 4
parseInteger("5aaa") // NaN
parseInteger("4.33333") // NaN
parseInteger("aaa"); // NaN
The easiest way would be to use + like this
const strTen = "10"
const numTen = +strTen // string to number conversion
console.log(typeof strTen) // string
console.log(typeof numTen) // number
I actually needed to "save" a string as an integer, for a binding between C and JavaScript, so I convert the string into an integer value:
/*
Examples:
int2str( str2int("test") ) == "test" // true
int2str( str2int("t€st") ) // "t¬st", because "€".charCodeAt(0) is 8364, will be AND'ed with 0xff
Limitations:
maximum 4 characters, so it fits into an integer
*/
function str2int(the_str) {
var ret = 0;
var len = the_str.length;
if (len >= 1) ret += (the_str.charCodeAt(0) & 0xff) << 0;
if (len >= 2) ret += (the_str.charCodeAt(1) & 0xff) << 8;
if (len >= 3) ret += (the_str.charCodeAt(2) & 0xff) << 16;
if (len >= 4) ret += (the_str.charCodeAt(3) & 0xff) << 24;
return ret;
}
function int2str(the_int) {
var tmp = [
(the_int & 0x000000ff) >> 0,
(the_int & 0x0000ff00) >> 8,
(the_int & 0x00ff0000) >> 16,
(the_int & 0xff000000) >> 24
];
var ret = "";
for (var i=0; i<4; i++) {
if (tmp[i] == 0)
break;
ret += String.fromCharCode(tmp[i]);
}
return ret;
}
String to Number in JavaScript:
Unary + (most recommended)
+numStr is easy to use and has better performance compared with others
Supports both integers and decimals
console.log(+'123.45') // => 123.45
Some other options:
Parsing Strings:
parseInt(numStr) for integers
parseFloat(numStr) for both integers and decimals
console.log(parseInt('123.456')) // => 123
console.log(parseFloat('123')) // => 123
JavaScript Functions
Math functions like round(numStr), floor(numStr), ceil(numStr) for integers
Number(numStr) for both integers and decimals
console.log(Math.floor('123')) // => 123
console.log(Math.round('123.456')) // => 123
console.log(Math.ceil('123.454')) // => 124
console.log(Number('123.123')) // => 123.123
Unary Operators
All basic unary operators, +numStr, numStr-0, 1*numStr, numStr*1, and numStr/1
All support both integers and decimals
Be cautious about numStr+0. It returns a string.
console.log(+'123') // => 123
console.log('002'-0) // => 2
console.log(1*'5') // => 5
console.log('7.7'*1) // => 7.7
console.log(3.3/1) // =>3.3
console.log('123.123'+0, typeof ('123.123' + 0)) // => 123.1230 string
Bitwise Operators
Two tilde ~~numStr or left shift 0, numStr<<0
Supports only integers, but not decimals
console.log(~~'123') // => 123
console.log('0123'<<0) // => 123
console.log(~~'123.123') // => 123
console.log('123.123'<<0) // => 123
// Parsing
console.log(parseInt('123.456')) // => 123
console.log(parseFloat('123')) // => 123
// Function
console.log(Math.floor('123')) // => 123
console.log(Math.round('123.456')) // => 123
console.log(Math.ceil('123.454')) // => 124
console.log(Number('123.123')) // => 123.123
// Unary
console.log(+'123') // => 123
console.log('002'-0) // => 2
console.log(1*'5') // => 5
console.log('7.7'*1) // => 7.7
console.log(3.3/1) // => 3.3
console.log('123.123'+0, typeof ('123.123'+0)) // => 123.1230 string
// Bitwise
console.log(~~'123') // => 123
console.log('0123'<<0) // => 123
console.log(~~'123.123') // => 123
console.log('123.123'<<0) // => 123
function parseIntSmarter(str) {
// ParseInt is bad because it returns 22 for "22thisendsintext"
// Number() is returns NaN if it ends in non-numbers, but it returns 0 for empty or whitespace strings.
return isNaN(Number(str)) ? NaN : parseInt(str, 10);
}
You can use plus.
For example:
var personAge = '24';
var personAge1 = (+personAge)
then you can see the new variable's type bytypeof personAge1 ; which is number.
Summing the multiplication of digits with their respective power of ten:
i.e: 123 = 100+20+3 = 1100 + 2+10 + 31 = 1*(10^2) + 2*(10^1) + 3*(10^0)
function atoi(array) {
// Use exp as (length - i), other option would be
// to reverse the array.
// Multiply a[i] * 10^(exp) and sum
let sum = 0;
for (let i = 0; i < array.length; i++) {
let exp = array.length - (i+1);
let value = array[i] * Math.pow(10, exp);
sum += value;
}
return sum;
}
The safest way to ensure you get a valid integer:
let integer = (parseInt(value, 10) || 0);
Examples:
// Example 1 - Invalid value:
let value = null;
let integer = (parseInt(value, 10) || 0);
// => integer = 0
// Example 2 - Valid value:
let value = "1230.42";
let integer = (parseInt(value, 10) || 0);
// => integer = 1230
// Example 3 - Invalid value:
let value = () => { return 412 };
let integer = (parseInt(value, 10) || 0);
// => integer = 0
Another option is to double XOR the value with itself:
var i = 12.34;
console.log('i = ' + i);
console.log('i ⊕ i ⊕ i = ' + (i ^ i ^ i));
This will output:
i = 12.34
i ⊕ i ⊕ i = 12
I only added one plus(+) before string and that was solution!
+"052254" // 52254
Number()
Number(" 200.12 ") // Returns 200.12
Number("200.12") // Returns 200.12
Number("200") // Returns 200
parseInt()
parseInt(" 200.12 ") // Return 200
parseInt("200.12") // Return 200
parseInt("200") // Return 200
parseInt("Text information") // Returns NaN
parseFloat()
It will return the first number
parseFloat("200 400") // Returns 200
parseFloat("200") // Returns 200
parseFloat("Text information") // Returns NaN
parseFloat("200.10") // Return 200.10
Math.floor()
Round a number to the nearest integer
Math.floor(" 200.12 ") // Return 200
Math.floor("200.12") // Return 200
Math.floor("200") // Return 200
function doSth(){
var a = document.getElementById('input').value;
document.getElementById('number').innerHTML = toNumber(a) + 1;
}
function toNumber(str){
return +str;
}
<input id="input" type="text">
<input onclick="doSth()" type="submit">
<span id="number"></span>
This (probably) isn't the best solution for parsing an integer, but if you need to "extract" one, for example:
"1a2b3c" === 123
"198some text2hello world!30" === 198230
// ...
this would work (only for integers):
var str = '3a9b0c3d2e9f8g'
function extractInteger(str) {
var result = 0;
var factor = 1
for (var i = str.length; i > 0; i--) {
if (!isNaN(str[i - 1])) {
result += parseInt(str[i - 1]) * factor
factor *= 10
}
}
return result
}
console.log(extractInteger(str))
Of course, this would also work for parsing an integer, but would be slower than other methods.
You could also parse integers with this method and return NaN if the string isn't a number, but I don't see why you'd want to since this relies on parseInt internally and parseInt is probably faster.
var str = '3a9b0c3d2e9f8g'
function extractInteger(str) {
var result = 0;
var factor = 1
for (var i = str.length; i > 0; i--) {
if (isNaN(str[i - 1])) return NaN
result += parseInt(str[i - 1]) * factor
factor *= 10
}
return result
}
console.log(extractInteger(str))

Retrieve decimals only from a variable

I'm making a distance/time used calculator where i'm trying to separate whole hours and minutes.
Code:
if (hours >= 1)
{
minutes = Number((hours-int.(hours))*60);
timeTxt.text = String(int.(hours)+" hours & "+(minutes)+" minutes");
}
else
{
timeTxt.text = String((hours*60).toFixed(0)+" minutes");
}
the "else" one is working and prints minutes only. But I can't get the first if statement to work. Trying to print "x hours & x minutes".
Getting this message in output:
TypeError: Error #1123: Filter operator not supported on type class int.
at Rutekalkulator2_fla::MainTimeline/calculate()
Couldn't you do something like:
(pseudocode)
double tmp = math.floor(yournumber);
yournumber = yournumber - tmp;
And that'll make your number be just the decimal part.
Besides that, I'm not really sure what your question is.
Convert everything to minutes then try the following:
timeTxt.text = String( totMinutes / 60 + ":" + totMinutes % 60);
// output 06:36
timeTxt.text = String( totMinutes / 60 + " hours and " + totMinutes % 60 + " minutes");
// output 6 hours and 36 minutes
I'm not fluent in Actionscript but if the modulo works the same as it does in other languages this should work for you.

Find the missing number in a given string

I found this interview question floating around, and after having given much thought to it, I couldn't really develop a sound algorithm for it.
Given a string of numbers in sequential order, find the missing number.The range of numbers is not given.
Sample Input:"9899100101103104105"
Answer:102
This is a simple problem.
Guess the number of digits for the first number
Read numbers from the string one by one. If the previous number you have read is x, the next number must be either x + 1 or x + 2. If it is x + 2, remember x + 1 as the missed number, continue until the end of the string anyway to verify that the initial guess was correct. If you read something else than x + 1 or x + 2, the initial guess was wrong and you need to restart with (next) guess.
With your example:
9899100101103104105
First guess length 1
read 9
the next number should be either 10 or 11. Read the next two digits, you get 89.
That is incorrect, so the initial guess was wrong.
Second guess length 2
read 98
the next number should be either 99 or 100. Read the next two digits for 99
the next number should be either 100 or 101. Read the next three digits for 100
... 101
... 103 (remember 102 as the missed number)
... 104
... 105
end of input
Guess of length 2 was verified as correct guess and 102 reported as missing number.
The only dififcult part, of course, is figuring out how many digits the numbers have. I see two approaches.
Try a certain number of digits for the first number, decide what the following number should therefore be (there'll be two options, depending on whether the missing number is the second one), and see if that matches the following string of digits. If so, continue on. If the string doesn't fit the pattern, try again with a different number of digits.
Look at the starting and ending portions of the string, and reason the number of digits based on that and the length of the string. This one's a little more handwavey.
digits=1
parse the string like the first number conatins digits digits only.
parse the next number and check if it is sequential correct related to the last parsed one
if it decreases, digit+=1, goto 1.
if it is 2 higher than the last parsed, you might found the gap, parse the rest, if parsing the restis not an increasing sequence, digit+=1, goto 2, otherwise you have found the gap.
if it is 1 higher than the last parsed number, goto 3.
digit+=1, goto 2. (I am not sure if this case can ever happen)
Example:
given: "131416".
1. digits=1
2. parse '1'
3. parse '3'
4. it does not decrease
5. possibly found the gap: parse the rest '1416' fails, because '1' != '4'
=> digit+=1 (digit=2) goto 2
2. parse '13'
3. parse '14'
4. it does not decrease
5. it is no 2 higher than the last parsed one (13)
6. it is 1 higher (14 = 13+1) => goto 3
3. parse '16'
4. it does not decrease
5. possibly found the gap: parse the rest '' passed because nothing more to parse,
=> found the gab: '15' is the missing number
Here is a working C# solution you can check in LINQPad:
void Main()
{
FindMissingNumberInString("9899100101103104105").Dump("Should be 102");
FindMissingNumberInString("78910121314").Dump("Should be 11");
FindMissingNumberInString("99899910011002").Dump("Should be 1000");
// will throw InvalidOperationException, we're missing both 1000 and 1002
FindMissingNumberInString("99899910011003");
}
public static int FindMissingNumberInString(string s)
{
for (int digits = 1; digits < 4; digits++)
{
int[] numbers = GetNumbersFromString(s, digits);
int result;
if (FindMissingNumber(numbers, out result))
return result;
}
throw new InvalidOperationException("Unable to determine the missing number fro '" + s + "'");
}
public static int[] GetNumbersFromString(string s, int digits)
{
var result = new List<int>();
int index = digits;
int number = int.Parse(s.Substring(0, digits));
result.Add(number);
while (index < s.Length)
{
string part;
number++;
digits = number.ToString().Length;
if (s.Length - index < digits)
part = s.Substring(index);
else
part = s.Substring(index, digits);
result.Add(int.Parse(part));
index += digits;
}
return result.ToArray();
}
public static bool FindMissingNumber(int[] numbers, out int missingNumber)
{
missingNumber = 0;
int? found = null;
for (int index = 1; index < numbers.Length; index++)
{
switch (numbers[index] - numbers[index - 1])
{
case 1:
// sequence continuing OK
break;
case 2:
// gap we expect to occur once
if (found == null)
found = numbers[index] - 1;
else
{
// occured twice
return false;
}
break;
default:
// not the right sequence
return false;
}
}
if (found.HasValue)
{
missingNumber = found.Value;
return true;
}
return false;
}
This can likely be vastly simplified but during exploratory coding I like to write out clear and easy to understand code rather than trying to write it in as few lines of code or as fast as possible.

AS2: How to iterate X times through a percentage calculation (containing a circular reference)?

Here is a question for the Excel / math-wizards.
I'm having trouble doing a calculation which is based on a formula with a circular reference. The calculation has been done in an Excel worksheet.
I've deducted the following equations from an Excel file:
a = 240000
b = 1400 + c + 850 + 2995
c = CEIL( ( a + b ) * 0.015, 100 )
After the iterations the total of A+B is supposed to be 249045 (where b = 9045).
In the Excel file this gives a circular reference, which is set to be allowed to iterate 4 times.
My problem: Recreate the calculation in AS2, going through 4 iterations.
I am not good enough at math to break this problem down.
Can anyone out there help me?
Edit: I've changed the formatting of the number in variable a. Sorry, I'm from DK and we use period as a thousand separator. I've removed it to avoid confusion :-)
2nd edit: The third equation, C uses Excels CEIL() function to round the number to nearest hundredth.
I don't know action script, but I think you want:
a = 240000
c = 0
for (i = 0; i < 4; i++){
b = 1400 + c + 850 + 2995
c = (a + b) * 0.015
}
But you need to determine what to use for the initial value of c. I assume that Excel uses 0, since I get the same value when running the above as I get in Excel with iterations = 4, c = 3734.69...
Where do you get the "A + B is supposed to be 249045" value? In Excel and in the above AS, b only reaches 8979 with those values.
function calcRegistrationTax( amount, iterations ) {
function roundToWhole( n, to ) {
if( n > 0 )
return Math.ceil( n/ to ) * to;
else if( n < 0)
return Math.floor( n/ to ) * to;
else
return to;
}
var a = amount;
var b = 0;
var c = 0
for (var i = 0; i < iterations; i++){
b = basicCost + ( c ) + financeDeclaration + handlingFee;
c = ( a + b ) * basicFeeRatio;
c = roundToWhole( c, 100 );
}
return b;
}
totalAmount = 240000 + calcRegistrationTax( 240000, 4 ); // This gives 249045
This did it, thanks to Benjamin for the help.

Resources