How are programs designed to control the rgb LEDs on computer fans coded? - rgba

Do 3rd party software companies require permission from the fan company or other companies? I am hoping to be able to custom control the RGB in my computer case and wondering how big of a task this is.

Related

What considerations to make for selecting Bluetooth Chipsets for control of LED via PWM?

I am involved working on new hardware LED products where we are selecting a Bluetooth chipset to use in multiple products controlled by iOS and Android apps, for at minimum the next 3-4 years. Also I am not the developer, a third party will be contracted for this project.
As part of background research, I wanted to ask for feedback from Stack Overflow communities' experience with programming for Bluetooth, more specifically with custom firmware and GPIO PWM for LED?
What kind of challenges did you come across?
Are there any granular details or features to look out for with the hardware?
**Edit: based on first answer-
Requirements:
BLE 5
I do need OTA update capability
Chip size not big constraint, plastic enclosure can accommodate up to 1 inch/25mm or bit more easily.
Not high temp application
Single-chip solution, that will be programmed with our firmware, controlling 4x PWM Channels is ideal for our LED strips, avoiding separate MCU
Cost per unit (lowest average cost/unit)- important factor at volume, TBD
**Qualities I can not gauge well myself, being a designer and not an experienced programmer:
Ease of integration/support (lowest cost of development)
Quality of the chip manufacturer's software tools
Quality of the chips documentation
I have found some questions related with Raspberry Pi that seem generally helpful, but those questions don't help me with features or the support and documentation as related to BT SOCs.
**Edit: Yes I we are only considering BLE, and the NORDIC Semiconductor link I have included below are BLE and BT 5.
NORDIC chips are on my short list, they seem well supported and capable of 3x or 4x PWM channels for example nRF52832 Nordic nRF52832 Spec info. or the newer model RF5340. Does anyone have experience with them?
I really appreciate any answers regarding development considerations with Bluetooth.
I will edit & clarify if needed.
If you wish to support iOS Apps, a BLE device is necessary, BT classic requires a special apple license (for your product) to be able to connect with iOS Apps.
But other than that, your specifications dont really help to rule out ANY chip.
The first question that comes to mind is what other features do you
have already on your specification list that could be satisfied with
a common solution. I.e. if you also need WiFi, don't choose two
separate BLE/WiFi Chips, buy a chip that can do both (it's both
2.4GHz RF). If you need OTA updates for your firmware, choose a chip manufacturer with extensive and well documented tooling.
Consider special requirements:
Do you need a very small chip?
Does it need to be run at high temperatures (i.e. inside a light bulb)?
Do you need to run at ultra-low-power?
Does it need a high performance RF transceiver?
Decide whether you need a single-chip solution, that will be programmed with your firmware, or if your firmware will run on a dedicated microcontroller which is connected to the BLE chip.
Unless you have absolutely no special requirements to narrow down the selection, I'd base my decision along these criteria (not ordered):
Ease of integration (lowest cost of development)
Cost per unit (lowest average cost/unit)
Quality of the chip manufacturer's software tools
Quality of the chips documentation
GPIO-PWM Output should be possible with almost any programmable BLE chip.

anti piracy measures for software on USB sticks

The problem:
I want to put a piece of software on a USB stick. The software needs to be effectively unusable without the USB stick in the drive, save perhaps for hardware tampering.
The software will not be mass produced; it has niche appeal, and we are therefore talking about maybe 1000-10000 units sold over its lifetime.
The USB stick can be non-standard in some manner, as a standard USB stick is normally user readable. The software will be running from the USB stick without any installation required, and ideally, it must function on computers without an active internet connection.
Is this possible ? Is there any way to achieve this, even to a limited extent ?
Thank you.
Hardware solution: Put an USB hub, a commercial USB software protection device and your USB data stick into a neat little plastic case.
Note: Some commercial software protection sticks may have enough internal memory for your application included. Cannot recommend products here due to site rules.
You could add a preregistered key to this USB and make it read only.
You can make it a read-only USB stick via software, via hardware or both (google have tons of ways of doing it)
This key could be as complicated as you please, a simple static word saved on a file, or a mathematical function that generates a key based on a common variable (software on the USB stick that runs when requested or when plug in, that generates a key based on the computer uptime for instance, something that can be verified by your software).
Your software only runs when this key is validated. On the software side you can also make it simple (search for a file in all available USBs and read static keys from a file). And you can make it more secure and complex, such as protecting the key with a asynchronous data encryption. And making the software only accept a specific versions or meta data coming from the USB device connected to the computer before reading the key from it, such as a specific serial number, driver and model name, (to make sure is one of yours).
All those things though can be hacked if a person wants to. Offline security validations are hardly failproof, but definitely you can keep most average ppl out of the loop.
You only need to evaluate how difficult you think is worth making it to crack. depends on your public and how bad it is to you if it is cracked (think about how many hours and effort a guy need to employ to be able to crack it, and if you believe that is more than what your target is willing to spend than you are probably safe)

What is Kinect + Linux being used for?

An article on Hackaday piqued my curiosity, and I see Kinect + Linux questions being asked here (mostly about configuration), so I'll venture this question:
It is clear to me that Kinect can be used together with Linux on a "regular pc" -- but I can't help wondering why, that is, what might you actually use this for?
I don't suppose people really like the human/computer interface presented in movies such as "Minority Report" -- surely, nobody is actually doing text editing, coding, or business data processing by "hand-waving". So besides just games & exercises, what are examples of actual, real-world, useful (ie. 'professional') applications of such a setup?
For instance, can it be used for 3D scanning of real-world objects to obtain digital models? What sort of accuracy would such a scan yield?
The Kinect can be used for a wide variety of useful applications. I'm not sure if you are asking specifically about Linux or if Windows ("regular PC") is acceptable, but I'll provide you with some examples that come to mind.
For Linux specifically, it is likely that applications on Linux are using the sensor's raw sensor data only, rather the skeletal tracking feature. Many Kinect applications are on Windows because Microsoft's Kinect SDK is available only on Windows, and it provides the best skeletal tracking accuracy to-date.
You are right that the Kinect is rarely used where a keyboard & mouse would be faster and more accurate, but note that it is potentially relevant for accessibility.
And yes, it can be used for 3D scanning of real-world objects. I'm not sure about the exact accuracy, but I think it is acceptable for many applications. The main benefits are its low cost and speed.
For examples of 3D scanning, check out:
KinectFusion, a Microsoft Research project
Occipital Structure sensor for 3D scanning. (This is not the Kinect sensor, but provides an example application for 3D scanning. The company has a Kinect-related history as well.)
Styku - 3D body scanning for clothes fitting
Aside from 3D scanning, here are some other examples of applications:
Atlas5D - at-home patient monitoring
GestSure - 'Minority Report' interface for surgical rooms
Jintronix - games, exercises, assessments for physical therapy
There are many depth sensors like the Kinect3D on the market. The latest notable application would be iPhone X's depth sensor and FaceID. Many companies in the space are working actively in FaceID now, which would also be useful on Linux. Check out Microsoft's Window Hello biometric facial ID system - see Microsoft's official website:
Manufacturing of the Kinect sensor and adapter has been discontinued,
but the Kinect technology continues to live on in products like the
HoloLens, Cortana voice assistant, the Windows Hello biometric facial
ID system, and a context-aware user interface.
Kinect has applications in the robotics community as well, though I don't know the specifics. I assume many in robotics community use Linux when working with the Kinect. The depth and color cameras can be used to provide vision and the microphone array for audio input.
Generally, the Kinect had a big impact when it was released not just because of its technology but also because of its low price point, even if it's not the most accurate for every application. As this technology improves, I hope many other applications will emerge and become mainstream.
EDIT: also, check out this Hacker News discussion: "Microsoft Has Stopped Manufacturing The Kinect"

Which developer roles or titles are needed to build a software DAW?

So far, I've used many different Audio Production software on Mac and Windows platforms. Often times, I ponder on the idea of creating my own DAW, but I realize that would be an extremely difficult challenge for a single person to undertake (especially if only knowledgeable in one particular area / language of programming).
There's a flood of ideas / features that comes to my mind just by the thought of some of the other DAWs I've used. From implementing MIDI in/out, Audio Routing, Mix Buses, VST support, User Interface for a Piano Roll and Song view, etc...
So my question is...
Which roles would be required in a team of developers to create a complete Digital Audio Workstation (DAW) Software?
I think the right answer is several good developers (you don't need so many, perhaps 3) a good product manager, an ui designer/graphist a lot of testers. And a good coffee machine.
The real problem is what kind of DAW do you want, portable on mac and windows, which OSs, which formats (vst 2, 3, AU, RTAS, AAX, rack extension, DX), do you want only MIDI and adio tracks, which external MIDI devices you want to support, do you support OSC, other protocols?
What will be the features of you mixer, integrated effects? What support of audio API on windows (wasapi, asio ...) do you want some cloud feature ? community or online store integration?
What kind of breakthrough would you have compared to cubase, live, PT, DP, Logic, garage band, bitwig, studio one, sonar, fl studio ...? Do you want modular patches or just tracks? Will you have advanced integrated controls or midi modifiers?
All that is the problem...
This is a very complex question!

How to programmatically use the mobile phone's IrDA to remote control a media player?

which API or library on which mobile OS is to be used when one needs to write a code to use the phone's IrDA to create the necessary impulses to remote control consumer electronics e.g. a HDD media player?
Is maybe a certain mobile OS better suited for that kind of application than others?
First you need to know that IrDA is not the best choice for remote control. It can be done, but IrDA is by design high speed/low range, you can emulate low speeds but ranges (IMO) are far from practical usage (Nokia e50 is able to control digital camera shutter from 2-3m... with very, very careful aiming). The amount of hacking needed to achieve this is shown here, you basically need to trick IrDA to send correct impulses with correct frequency.
The second thing is that CIR remote control is not as simple as you might think. There are countless standards that differ in used frequency, modulation, wavelength, command codes and so on. You need to know what you want to support. LIRC site can be very helpful in determining that http://lirc.sourceforge.net/remotes/. Approachable explanation of what it all means is available here: http://www.sbprojects.com/knowledge/ir/ir.htm
As for ready made libraries and platforms... I honestly don't know. I've seen it done on PocketPC (nevo among others) and Symbian S60 (irRemote). Haven't seen working J2ME app yet.
Last time I needed the IR remote I hacked it together using IR diode, AVR ATTiny and surprisingly short piece of assembly :)

Resources