search for multiple objects from an image - colors

I need to find several objects (let's say up to 10 pieces) in the picture. Objects must be of a certain color.
Using this code and searching for contours, it turns out to find only the midpoint between several objects, but you need to find the coordinates of each object separately.
Maybe somehow you can make a limit on the size of one object? (i.e. the object must not be less than 100x100 pixels, and not more than 300x300 pixels)
import cv2
import matplotlib.pyplot as plt
import pyautogui as pg
output = '1.jpg'
flags = [i for i in dir(cv2) if i.startswith('COLOR_')]
nemo = cv2.imread(output, cv2.IMREAD_COLOR) #output, cv2.IMREAD_COLOR)
nemo = cv2.cvtColor(nemo, cv2.COLOR_BGR2RGB)
hsv_nemo = cv2.cvtColor(nemo, cv2.COLOR_RGB2HSV)
light_orange = (92,128,224)
dark_orange = (109,255,255)
#
mask = cv2.inRange(hsv_nemo, light_orange, dark_orange)
result = cv2.bitwise_and(nemo, nemo, mask=mask)
#
moments = cv2.moments(mask, 1)
x_moment = moments['m01']
y_moment = moments['m10']
area = moments['m00']
y = int(x_moment / area)
x = int(y_moment / area)
pg.moveTo(x,y)
plt.imshow(result)
plt.imsave('result.jpg',result)
plt.show()
#print(x,y)
gray = cv2.cvtColor(result, cv2.COLOR_BGR2GRAY)
ret, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(result, contours, -1, (0, 0, 255), 3)
cv2.imshow('img', result)
cv2.waitKey(0)
#print (len(contours[0]))
#print (len(contours[1]))
enter image description here

Related

How to crop images based on mask threshold?

I have to crop a lot of images manually. Not the funniest thing to do. So I thought I'd try to do it using Python.
I can detect the subject, create a mask, but I have no idea how to get the points from the very bottom part and crop based on them.
Any help is appreciated
import cv2
img = cv2.imread('image5.jpg')
h, w = img.shape[:2]
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
thr = cv2.threshold(gray, 192, 255, cv2.THRESH_BINARY_INV)[1]
cv2.imwrite('result5.png', thr)
you can try to find all external contours using cv2.RETR_EXTERNAL and pick the bottom most point, like this:
import cv2
import numpy as np
import imutils
im = cv2.imread('images/tennis.jpg')
# Percent of original size
scale_percent = 20
width = int(im.shape[1] * scale_percent / 100)
height = int(im.shape[0] * scale_percent / 100)
dim = (width, height)
# Resize image
im = cv2.resize(im, dim, interpolation = cv2.INTER_AREA)
# Convert to grayscale
gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
# Canny
canny_output = cv2.Canny(im, 120, 240)
# Find external contours
contours, hierarchy = cv2.findContours(canny_output, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
#cv2.drawContours(im, [contours[0]], 0, (0,255,0), 3) # Uncomment this line to see what contour opencv is finding
# Pick the bottom most point and add an offset (whatever value you want, this is just for aesthetics)
c = contours[0]
bottommost = tuple(c[c[:, :, 1].argmax()][0])[1] + 5
# Crop image
im = im[:bottommost, :]
# Show image
cv2.imshow('image', im)
cv2.waitKey()
Very good thinking I'd say! now the implementation:
xx,yy = thrs.nonzero()
max_crop_h = xx.max()
crop = img[:max_crop_h,:]
numpy has your back!

Python Extract number from simple Image

I have the following image
lower = np.array([175, 125, 45], dtype="uint8")
upper = np.array([255, 255, 255], dtype="uint8")
mask = cv2.inRange(image, lower, upper)
img = cv2.bitwise_and(image, image, mask=mask)
plt.figure()
plt.imshow(img)
plt.axis('off')
plt.show()
now if I try to transform into grayscale like this:
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
I get that:
And I would like to extract the number on it.
The suggestion:
gray = 255 - gray
emp = np.full_like(gray, 255)
emp -= gray
emp[emp==0] = 255
emp[emp<100] = 0
gauss = cv2.GaussianBlur(emp, (3,3), 1)
gauss[gauss<220] = 0
plt.imshow(gauss)
gives the image:
Then using pytesseract on any of the images:
data = pytesseract.image_to_string(img, config='outputbase digits')
gives:
'\x0c'
Another suggested solution is:
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
thr = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV)[1]
txt = pytesseract.image_to_string(thr)
plt.imshow(thr)
And this gives
'\x0c'
Not very satisfying... Anyone has a better solution please?
Thanks!
I have a two step solution
Apply thresholding
Set psm mode to 7.
When you apply thresholding to the image:
Thresholding is a simplest method of displaying the features of the image.
Now from the output image, when we read:
txt = image_to_string(thr, config="--psm 7")
print(txt)
Result will be:
| 1,625 |
Now why do we set page-segmentation-mode (psm) mode to the 7?
Well, treating image as a single text line will give the accurate result.
But we have to modify the result. Since the current result is | 1,625 |
We should remove the |
print("".join([t for t in txt if t != '|']))
Result:
1,625
Code:
import cv2
from pytesseract import image_to_string
img = cv2.imread("LZ3vi.png")
gry = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
thr = cv2.threshold(gry, 0, 255,
cv2.THRESH_BINARY_INV)[1]
txt = image_to_string(thr, config="--psm 7")
print("".join([t for t in txt if t != '|']).strip())
Update
how do you get this clean black and white image from my original image?
Using 3-steps
Reading the image using opencv's imread function
img = cv2.imread("LZ3vi.png")
Now we read the image in BGR fashion. (Not RGB)
Convert the image to the graysclae
gry = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
Result will be:
Apply threshold
thr = cv2.threshold(gry, 0, 255, cv2.THRESH_BINARY_INV)[1]
Result will be:
Now if you are wondering about thresholding. Read the simple-threhsolding
All my filters, grayscale... get weird colored images
The reason is, when you are displaying the image using pyplot, you need to set color-map (cmap) to gray
plt.imshow(img, cmap='gray')
You can read the other types here
Two issues blocked the pytessract from detecting your number:
The white rectangle around the number(Inverting and filling is the solution).
The Noise in the numbers shape(Gaussian Smoothing dealt with that)
The solution that AlexAlex has proposed will work perfectly if it was followed by a Gaussian filter:
output: 1,625
import numpy as np
import pytesseract
import cv2
BGR = cv2.imread('11.png')
RGB = cv2.cvtColor(BGR, cv2.COLOR_BGR2RGB)
lower = np.array([175, 125, 45], dtype="uint8")
upper = np.array([255, 255, 255], dtype="uint8")
mask = cv2.inRange(RGB, lower, upper)
img = cv2.bitwise_and(RGB, RGB, mask=mask)
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
gray = 255 - gray
emp = np.full_like(gray, 255)
emp -= gray
emp[emp==0] = 255
emp[emp<100] = 0
gauss = cv2.GaussianBlur(emp, (3,3), 1)
gauss[gauss<220] = 0
text = pytesseract.image_to_string(gauss, config='outputbase digits')
print(text)

how do I extract all pixel values from a certain ROI and then store it as a CSV file and again use that csv file to get back that ROI

After applying mask original image
import cv2
import dlib
import numpy as np
img = cv2.imread("Aayush.jpg")
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
msk = np.zeros_like(img_gray)
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
faces = detector(img_gray)
for face in faces:
landmarks = predictor(img_gray, face)
lp = []
for n in range(0,68):
x = landmarks.part(n).x
y = landmarks.part(n).y
lp.append((x,y))
p = np.array(lp, np.int32)
#cv2.circle(img, (x,y), 3, (0, 0, 255), -1)
convexhull = cv2.convexHull(p)
#cv2.polylines(img, [convexhull], True, (255,0,0), 3)
cv2.fillConvexPoly(msk, convexhull, 255)
img1 = cv2.bitwise_and(img, img, mask = msk)
img1 containsa complete black image with face cut from img, I just require the pixel values of face portion and not complete image
As original image and mask have not been provided in the question itself. I am assuming a simple input image and a mask image with circular cavity as:
The mask here is a single channel matrix with a value of 255 in the central cavity. To get the pixel info inside the cavity only you can use following numpy operation:
pixel_info = original_image[mask == 255]
# You may need to convert the numpy array to Python list.
pixel_info_list = pixel_info.tolist()
Now you may serialize the list to any format you want (csv in this case.)
Full code:
import cv2
import numpy as np
original_image = cv2.imread("/path/to/lena.png")
mask = np.zeros(original_image.shape[:2], dtype=original_image.dtype)
mask = cv2.circle(mask, (256, 256), 100, [255], -1)
pixel_info = original_image[mask == 255]
pixel_info_list = pixel_info.tolist()

Is there a solution to find the external contour correctly in my images

I got a segmented image as entry in my program the goal is to split regions into two images one contains external contours(regions) and the other contains internal contours (regions).
Programme in python 3.7 and opencv
I try to use some morphological operations (close) and smoothing filter (median) then I apply a binary and otsu threshold and canny edge detection to get a better version of contours with the fonction find contour
In first I extrac external contours with CV2.RETR_EXTERNAL but this is what I get:
def function(image):
#pretraitement
im = cv2.imread(image,0)
_Kernel = 3
iteration__ = 5
im = Pretraitement.pretraitement.lissage_median(im, _Kernel, iteration__)
kernel = (3,3)
im = cv2.morphologyEx(im, cv2.MORPH_CLOSE,cv2.getStructuringElement(cv2.MORPH_CROSS,kernel))
high_thresh, im = cv2.threshold(im, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
lowThresh = 0.5 * high_thresh
cv2.rectangle(im, (0, 0), (im.shape[1], im.shape[0]), 0, 3)
contour = cv2.findcontours(
cv2.Canny(im.copy(), lowThresh, high_thresh),
Img_Colored_Readed.shape, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
MaskExtern = np.zeros((im.shape[0],im.shape[1],3),dtype=np.uint8)
MaskRegion = np.zeros((im.shape[0],im.shape[1],3),dtype=np.uint8)
MaskContour = = np.zeros(im.shape,dtype=np.uint8)
for i in range(len(contour)):
for j in range(len(contour)):
#to check if the contour j is inside contour i
if BoundaryBasedDescriptors.Contours.pointInContour3(contour[i],contour[j]):
pass
else:
cv2.drawContours(MaskExtern,contour, j, (0,255,255), 1)
cv2.drawContours(MaskContour,contour,i,255,1)
cv2.drawContours(MaskRegion,contour,i,(255,i*10,255-i*10),-1)
cv2.imwrite('_external.jpg', MaskExtern)
cv2.imwrite('_contour.bmp', MaskContour)
cv2.imwrite('_colore.jpg', MaskRegion)
The link to the image represent the segmented imageenter image description here
and this is what I get when I draw all contours with thickness -1enter image description here
I expect to get the rigth external contour (regions) I get some regions that are internalenter image description here
This is the error in your code:
cv2.rectangle(im, (0, 0), (im.shape[1], im.shape[0]), 0, 3)
The result is assigned to nothing, so it does nothing. If you add im = in front you'll get the behavior you're expecting.
If your purpose is to separate the internal and the external white area's, you could also try this approach. First invert the image. Then find the external outline of the black area (in original, white in inverted), which you can then use as a mask to separate the area's. If necessary you you can use the the masked interior image to find the smaller contours.
Result:
Code:
import cv2
import numpy as np
# load image as grayscale
img = cv2.imread('cSxN8.png',0)
# treshold to create binary image
tr, img = cv2.threshold(img,50,255,cv2.THRESH_BINARY)
# invert image
img_inv = cv2.bitwise_not(img)
# find external contours
contours, hier = cv2.findContours(img_inv, cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
# draw contours in gray
for cnt in contours:
cv2.drawContours(img,[cnt],0,(127),5)
# display image
cv2.imshow('Result', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
```python```
import cv2
import numpy as np
# load image as grayscale
img = cv2.imread('cSxN8.png',0)
# treshold to create binary image
tr, thresh = cv2.threshold(img,50,255,cv2.THRESH_BINARY)
img = thresh.copy()
# invert image
img_inv_ = cv2.bitwise_not(img)
#find_external_contours
_,cnt = cv2.findcontours(img_inv.copy(),cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
for i in cnt:
cv2.drawContours(img, [cnt], 0, (127), 1)
#to extract the edges of the external contour
img = cv2.bitwise_xor(img,img_inv)
#binarisation of the external contour
_, img = cv2.threshold(img,126,255,cv2.THRESH_BINARY)
#now we fill the external region
cnt = cv2.findcontours(img_prete_2,cv2.RETR_CCOPM,cv2.CHAIN_APPROX_SIMPLE)
mask_externe=np.zeros(img.shape,dtype=np.uint8)
for i in range(cnt.longeurCnt):
cv2.drawContours(mask_externe,[cnt.contour [i]],-1,255,-1)
#get the internal region
mask_internal = cv2.bitwise_xor(img_inv,mask_extern)
```
this is the complete solution (the approach is poposed by J.D.
, thanks to you)

How can i count segments in an image in python?

I am new to image processing and python. You might've seen my amateur codes on this site in the last couple of days.
I am trying to count the number of trees using aerial images. This is my code:
from PIL import Image
import cv2
import numpy as np
from skimage import io, filters, measure
from scipy import ndimage
img = Image.open("D:\\Texture analysis\\K-2.jpg")
row, col = img.size
hsvimg = img.convert('HSV')
hsvimg.mode = 'RGB'
hsvimg.save('newImage2.jpg')
npHSI = np.asarray(hsvimg) #Convert HSI Image to np image
blur = cv2.GaussianBlur(npHSI, (45, 45), 5)
assert isinstance(blur, np.ndarray) ##############################
assert len(blur.shape) == 3 #Convert np Image to HSI Image
assert blur.shape[2] == 3 ##############################
hsiBlur = Image.fromarray(blur, 'RGB')
hsiBlur.save('hsiBlur.jpg') #Save the blurred image
## Read
img = cv2.imread("D:\\Texture analysis\\hsiBlur.jpg")
## convert to hsv
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
#Threshold the image and segment the trees
mask = cv2.inRange(hsv, (36, 25, 25), (70, 255,255))
imask = mask>0
green = np.zeros_like(img, np.uint8)
green[imask] = img[imask]
## save
cv2.imwrite("green.png", green)
#Count the number of trees
im = io.imread('green.png', as_grey=True)
val = filters.threshold_otsu(im)
drops = ndimage.binary_fill_holes(im < val)
labels = measure.label(drops)
print(labels.max())
Original image:
HSI image with gaussian filter:
Segmented image:
The last part of the code returns 7, which is a wrong output. The value should be above 50. How can I properly count the number of green segments in the final segmented image?
EDIT
I converted green.png to binary and applied erosion with a 3x3 filter and iterated it 7 times to remove the noise.
This is what I did at the end. I followed this stackoverflow link
##save
cv2.imwrite("green.png", green)
#Convert to grayscale
gray = np.dot(green[...,:3], [0.299, 0.587, 0.114])
cv2.imwrite("grayScale.jpg", gray)
#Binarize the grayscale image
ret,bin_img = cv2.threshold(gray,127,255,cv2.THRESH_BINARY)
cv2.imwrite("bin_img.jpg", bin_img)
#Erosion to remove the noise
kernel = np.ones((3, 3),np.uint8)
erosion = cv2.erode(gray, kernel, iterations = 7)
cv2.imwrite("erosion.jpg", erosion)
#Count the number of trees
finalImage = cv2.imread('erosion.jpg')
finalImage = cv2.cvtColor(finalImage, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(finalImage, 127, 255, 1)
im2, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
for cnt in contours:
cv2.drawContours(finalImage,[cnt],0,(0,0,255),1)
Saurav mentioned in his answer ... size of "contours" will give you the count. This print(contour.size())gives an error and print(contour) just prints a long 2D array. How can i get the size of contour?
PS. I didn't upload the grayscale, binary and eroded image because i felt that the images were already taking too much space, I can still upload them if anyone wants to.
I've found 52 trees with that script:
from PIL import Image, ImageDraw, ImageFont
image = Image.open('04uX3.jpg')
pixels = image.load()
size = image.size
draw = ImageDraw.Draw(image)
font = ImageFont.truetype('arial', 60)
i = 1
for x in range(0, size[0], 100):
for y in range(0, size[1], 100):
if pixels[x, y][1] > 200:
draw.text((x, y), str(i), (255, 0, 0), font=font)
i += 1
image.save('result.png')
You can see that some trees weren't detected and some non-trees were detected. So this is very rough calculation:

Resources