sorry for this very basic question. I've trawled through previous pages and cannot quite find a case that corresponds to our situation.
320 individuals rated two types of films. The rating was provided on a 1-11 scale.There are many films of each type. In short the DV is a continuous variable.
20 individuals have a particular disease that we now consider of interest. We would like to examine the effect of the disease on the rating.
We conducted a 2-way repeated measures ANOVA, using 'situation type' as a within-subject factor, and 'disease status' as a between-subject factor, using SPSS. The design is obviously unbalanced with more observations in the healthy group. The data appeared to be normally distributed. Levine test suggested equality of variance. Does that mean it is appropriate to use ANOVA for this analysis?
Related
Running a survival analysis, assume the p-value regarding a variable is statistically significant - let's say with a positive association with the outcome. However, according to the Schoenfeld residuals, the proportional hazard (PH) assumption has is violated.
Which scenario among below could possibly happen after correcting for PH violations?
The p-value may not be significant anymore.
p-value still significant, but the size of HR may change.
p-value still significant, but the direction of association may be altered (i. e. a positive association may end up being negative).
The PH assumption violation usually means that there is an interaction effect that needs to be included in the model. In the simple linear regression, including a new variable may alter the direction of the existing variables' coefficients due to the collinearity. Can we use the same rationale in the case above?
Therneau and Gramsch have written a very useful text, "Modeling Survival Data" that has an entire chapter on testing proportionality. At the end of the chapter is a section on causes and modeling alternatives, which I think can be used for answering this question. Since you mention interactions it makes your question about a particular p-value rather ambiguous and vague.
1) Certainly if you have chosen a particular measurement as the subject of your interest and it turns out the all of the effects are due to its interaction with another variable that you happened to also measure, then you may be in a position where the variable-of-interest's p-value will decrease, possibly to zero.
2) It's almost certain that modification of a model with a different structure (say will the addition of time-varying covariates or a different treatment of time) will result in a different estimated HR for a particular covariate and I think it would be impossible to predict the direction of the change.
3) As to whether to sign of the coefficient could change, I'm quite sure that would be possible as well. The scenario I'm thinking of would have a mixture of two groups say men and women and one of the groups had a sub-group whose early mortality was greatly increased, e.g. breast cancer, while the surviving members of that group would have a more favorable survival expectation. The base model might show a positive coefficient (high risk) while a model that was capable of identifying the subgroup at risk would then allow the gender-related coefficient to become negative (lower risk).
I seek the most effective and simple way to classify 800k+ scholarly articles as either relevant (1) or irrelevant (0) in relation to a defined conceptual space (here: learning as it relates to work).
Data is: title & abstract (mean=1300 characters)
Any approaches may be used or even combined, including supervised machine learning and/or by establishing features that give rise to some threshold values for inclusion, among other.
Approaches could draw on the key terms that describe the conceptual space, though simple frequency count alone is too unreliable. Potential avenues might involve latent semantic analysis, n-grams, ..
Generating training data may be realistic for up to 1% of the corpus, though this already means manually coding 8,000 articles (1=relevant, 0=irrelevant), would that be enough?
Specific ideas and some brief reasoning are much appreciated so I can make an informed decision on how to proceed. Many thanks!
Several Ideas:
Run LDA and get document-topic and topic-word distributions say (20 topics depending on your dataset coverage of different topics). Assign the top r% of the documents with highest relevant topic as relevant and low nr% as non-relevant. Then train a classifier over those labelled documents.
Just use bag of words and retrieve top r nearest negihbours to your query (your conceptual space) as relevant and borrom nr percent as not relevant and train a classifier over them.
If you had the citations you could run label propagation over the network graph by labelling very few papers.
Don't forget to make the title words different from your abstract words by changing the title words to title_word1 so that any classifier can put more weights on them.
Cluster the articles into say 100 clusters and then choose then manually label those clusters. Choose 100 based on the coverage of different topics in your corpus. You can also use hierarchical clustering for this.
If it is the case that the number of relevant documents is way less than non-relevant ones, then the best way to go is to find the nearest neighbours to your conceptual space (e.g. using information retrieval implemented in Lucene). Then you can manually go down in your ranked results until you feel the documents are not relevant anymore.
Most of these methods are Bootstrapping or Weakly Supervised approaches for text classification, about which you can more literature.
I am writing a study protocol for my masters thesis. The study seeks to compare the rates of Non Communicable Diseases and risk factors and determine the effects of rural to urban migration. Sibling pairs will be identified from a rural area. One of the siblings should have participated in the rural NCD survey which is currently on going in the area. The other sibling should have left the area and reported moving to a city.Data will collected by completing a questionnaire on demographics, family history,medical history, diet,alcohol consumption, smoking ,physical activity.This will be done for both the rural and urban sibling, with data on the amount of time spent in urban areas fur
The outcomes which are binary (whether one has a condition or not) are : 1.diabetic, 2.hypertensive, 3.obese
What statistical method can I use to compare the outcomes (stated above) between the two groups, considering that the siblings were matched (one urban sibling for every rural sibling)?
What statistical methods can also be used to explore associations between amount spent in urban residence and the outcomes?
Given that your main aim is to compare quantities of two nominal distributions, a chi-square test seems to be the method of choice with regard to your first question. However, it should be mentioned that a chi-square test is somehow "the smallest" test for answering differences in samples. If you are studying medicine (or related) a chi-square test is fine because it is also frequently applied by researchers of this field. If you are studying psychology or sociology (or related) I'd advise to highlight limitations of the test in the discussions section since it mostly tests your distributions against randomly expected distributions.
Regarding your second question, a logistic regression would be applicable since it allows binomial distributed variables both for independent variables (predictors) and dependent variables. However, if you have other interval scaled variables (e.g. age, weight etc.) you could also use t-tests or ANOVAs to investigate differences between these variables with respect to the existence of specific diseases (i.e. is diabetic or not).
Overall, this matter strongly depends on what you mean by "association". Classically, "association" refers to correlations or linear regression (for which you need interval scaled variables on "both sides") but given your data structure, the aforementioned methods possess a better fit.
How you actually calculate these tests depends on the statistics software used.
I am running an analysis of several thousand (e.g., 10,000) text documents. I have computed TF-IDF weights and have a matrix with pairwise cosine similarities. I want to treat the documents as a graph to analyze various properties (e.g., the path length separating groups of documents) and to visualize the connections as a network.
The problem is that there are too many similarities. Most are too small to be meaningful. I see many people dealing with this problem by dropping all similarities below a particular threshold, e.g., similarities below 0.5.
However, 0.5 (or 0.6, or 0.7, etc.) is an arbitrary threshold, and I'm looking for techniques that are more objective or systematic to get rid of tiny similarities.
I'm open to many different strategies. For example, is there a different alternative to tf-idf that would make most of the small similarities 0? Other methods to keep only significant similarities?
In short, take the average cosine value of an initial clustering or even all of the initial sentences and accept or reject clusters based on something akin to the following.
One way to look at the problem is to try and develop a score based on a distance from the mean similarity (1.5 standard deviations (86th percentile if the data were normal) tends to mark an outlier with 3 (99.9th percentile) being an extreme outlier), taking the high end for good measure. I cannot remember where, but this idea has had traction in other forums and formed the basis for my similarity.
Keep in mind that the data is not likely to be normally distributed.
average(cosine_similarities)+alpha*standard_deviation(cosine_similarities)
In order to obtain alpha, you could use the Wu Palmer score or another score as described by NLTK. Strong similarities with Wu Palmer should lead to a larger range of acceptance while lower Wu Palmer scores should lead to a more strict acceptance. Therefore, taking 1-Wu Palmer score would be adviseable. You can even use this method for LSA or LDA groups. To be even more strict and take things close to 1.5 or more standard deviations, you could even try 1+Wu Palmer (the cream of the crop), re-find the ultimate K,find the new score, cluster, and repeat.
Beware though, this would mean finding the Wu Palmer of all relevant words and is quite a large computational problem. Also, 10000 documents is peanuts compared to most algorithms. The smallest I have seen for tweets was 15,000 and the 20 news groups set was 20,000 documents. I am pretty sure Alchemy API uses something akin to the 20 news groups set. They definitely use senti-wordnet.
The basic equation is not really mine so feel free to dig around for it.
Another thing to keep in mind is that the calculation is time intensive. It may be a good idea to use a student t value for estimating the expected value/mean wu-palmer score of SOV pairings and especially good if you try to take the entire sentence. Commons Math3 for java/scala includes the distribution as does scipy for python and R should already have something as well.
Xbar +/- tsub(alpha/2)*sample_std/sqrt(sample_size)
Note: There is another option with this weight. You could use an algorithm that adds or subtracts from this threshold until achieving the best result. This would likely not be related solely to the cosine importance but possibly to an inflection point or gap as with Tibshirani's gap statistic.
I'm trying to find confidence intervals for the means of various variables in a database using SPSS, and I've run into a spot of trouble.
The data is weighted, because each of the people who was surveyed represents a different portion of the overall population. For example, one young man in our sample might represent 28000 young men in the general population. The problem is that SPSS seems to think that the young man's database entries each represent 28000 measurements when they actually just represent one, and this makes SPSS think we have much more data than we actually do. As a result SPSS is giving very very low standard error estimates and very very narrow confidence intervals.
I've tried fixing this by dividing every weight value by the mean weight. This gives plausible figures and an average weight of 1, but I'm not sure the resulting numbers are actually correct.
Is my approach sound? If not, what should I try?
I've been using the Explore command to find mean and standard error (among other things), in case it matters.
You do need to scale weights to the actual sample size, but only the procedures in the Complex Samples option are designed to account for sampling weights properly. The regular weight variable in Statistics is treated as a frequency weight.