Trait for conversion of references and owned values to Cow - rust

I have a function that can handle both owned and borrowed values of some type Foo by accepting a Cow<'_, Foo>. However, I'd like to make it more convenient by allowing to pass in owned or borrowed Foos directly.
Is it possible to have a conversion trait to Cow that's implemented both on a reference type and its owned version?
This is what I tried:
trait Convert<'a> : Clone {
fn into_cow(self) -> Cow<'a, Self>;
}
// Works
impl<'a> Convert<'a> for Foo {
fn into_cow(self) -> Cow<'a, Self> {
println!("owned");
Cow::Owned(self)
}
}
// Doesn't work
impl<'a> Convert<'a> for &'a Foo {
fn into_cow(self) -> Cow<'a, Self> {
println!("borrowed");
Cow::Borrowed(self)
}
}
The borrowed version says that Borrowed expected a &&'a Foo but found a &'a Foo.

Self in the implementation of a trait for &Foo is &Foo, so into_cow() doesn't return the same type in both impls.
One solution would be to change the return type to Cow<'a, Foo>, but that of course limits the trait to only work on Foo.
A better way is to make the owned type a generic parameter of Convert like this:
trait Convert<'a, T: Clone> {
fn into_cow(self) -> Cow<'a, T>;
}
impl<'a, T: Clone> Convert<'a, T> for T {
fn into_cow(self) -> Cow<'a, T> {
println!("owned");
Cow::Owned(self)
}
}
impl<'a, T: Clone> Convert<'a, T> for &'a T {
fn into_cow(self) -> Cow<'a, T> {
println!("borrowed");
Cow::Borrowed(self)
}
}
fn take_foo<'a>(foo: impl Convert<'a, Foo>) {
let cow = foo.into_cow();
}
fn main() {
take_foo(&Foo{});
take_foo(Foo{});
}

Do you ever make use of the ownership, or always reborrow it? If only reborrowing, is std::convert::AsRef what you're looking for?
fn take_foo(foo: impl AsRef<Foo>) {
let foo: &Foo = foo.as_ref();
todo!();
}

Related

borrow_mut() on my RefCell-like structure doesn't work

I try to write my own RefCell-like mutable memory location but without runtime borrow checking (no overhead). I adopted the code architecture from RefCell (and Ref, and RefMut). I can call .borrow() without problems but if I call .borrow_mut() then the rust compiler says cannot borrow as mutable. I don't see the problem, my .borrow_mut() impl looks fine?
code that fails:
let real_refcell= Rc::from(RefCell::from(MyStruct::new()));
let nooverhead_refcell = Rc::from(NORefCell::from(MyStruct::new()));
// works
let refmut_refcell = real_refcell.borrow_mut();
// cannot borrow as mutable
let refmut_norefcell = nooverhead_refcell.borrow_mut();
norc.rs (No Overhead RefCell)
use crate::norc_ref::{NORefMut, NORef};
use std::cell::UnsafeCell;
use std::borrow::Borrow;
#[derive(Debug)]
pub struct NORefCell<T: ?Sized> {
value: UnsafeCell<T>
}
impl<T> NORefCell<T> {
pub fn from(t: T) -> NORefCell<T> {
NORefCell {
value: UnsafeCell::from(t)
}
}
pub fn borrow(&self) -> NORef<'_, T> {
NORef {
value: unsafe { &*self.value.get() }
}
}
pub fn borrow_mut(&mut self) -> NORefMut<'_, T> {
NORefMut {
value: unsafe { &mut *self.value.get() }
}
}
}
norc_ref.rs (data structure returned by NORefCell.borrow[_mut]()
use std::ops::{Deref, DerefMut};
#[derive(Debug)]
pub struct NORef<'b, T: ?Sized + 'b> {
pub value: &'b T,
}
impl<T: ?Sized> Deref for NORef<'_, T> {
type Target = T;
#[inline]
fn deref(&self) -> &T {
self.value
}
}
/// No Overhead Ref Cell: Mutable Reference
#[derive(Debug)]
pub struct NORefMut<'b, T: ?Sized + 'b> {
pub value: &'b mut T,
}
impl<T: ?Sized> Deref for NORefMut<'_, T> {
type Target = T;
#[inline]
fn deref(&self) -> &T {
self.value
}
}
impl<T: ?Sized> DerefMut for NORefMut<'_, T> {
#[inline]
fn deref_mut(&mut self) -> &mut T {
self.value
}
}
NORefCell::borrow_mut() takes &mut self, which requires a DerefMut on the Rc in which it is wrapped. This won't work because Rc does not give mutable references just by asking nicely (you need it to check if the reference count is exactly one, otherwise there would be multiple mutable borrows).
borrow_mut has to take &self instead of &mut self.
As mentioned in my comment: What you are basically doing is providing a safe-looking abstraction around an UnsafeCell. This is incredibly dangerous. Notice the docs regarding UnsafeCell:
The compiler makes optimizations based on the knowledge that &T is not mutably aliased or mutated, and that &mut T is unique. UnsafeCell is the only core language feature to work around the restriction that &T may not be mutated.
You are providing a thin wrapper around this powerful object, with no unsafe on the API-boundary. The "No-overhead-RefCell" is really a "no-trigger-guard-foot-gun". It does work, yet be warned about its dangers.

How do I return the result of get_mut from a HashMap or a HashSet?

I'm trying to wrap a HashMap, as defined below, to return a mutable reference from a HashMap:
use std::{collections::HashMap, marker::PhantomData};
struct Id<T>(usize, PhantomData<T>);
pub struct IdCollection<T>(HashMap<Id<T>, T>);
impl<'a, T> std::ops::Index<Id<T>> for &'a mut IdCollection<T> {
type Output = &'a mut T;
fn index(&mut self, id: &'a Id<T>) -> Self::Output {
self.0.get_mut(id).unwrap()
}
}
And the resulting error:
note: first, the lifetime cannot outlive the anonymous lifetime #1 defined on the method body at 54:5...
--> src/id_container.rs:54:5
|
54 | / fn index(&mut self, id: &'a Id<T>) -> Self::Output {
55 | | self.0.get_mut(id).unwrap()
56 | | }
| |_____^
note: ...so that reference does not outlive borrowed content
--> src/id_container.rs:55:9
|
55 | self.0.get_mut(id).unwrap()
| ^^^^^^
note: but, the lifetime must be valid for the lifetime 'a as defined on the impl at 52:6...
--> src/id_container.rs:52:6
|
52 | impl<'a, T> std::ops::Index<Id<T>> for &'a mut IdCollection<T> {
| ^^
= note: ...so that the types are compatible:
expected std::ops::Index<id_container::Id<T>>
found std::ops::Index<id_container::Id<T>>
Why can't the compiler extend the lifetime of the get_mut? The IdCollection would then be borrowed mutably.
Note that I tried using a std::collections::HashSet<IdWrapper<T>> instead of a HashMap:
struct IdWrapper<T> {
id: Id<T>,
t: T,
}
Implementing the proper borrow etc. so I can use the Id<T> as a key.
However, HashSet doesn't offer a mutable getter (which makes sense since you don't want to mutate what's used for your hash). However in my case only part of the object should be immutable. Casting a const type to a non-const is UB so this is out of the question.
Can I achieve what I want? Do I have to use some wrapper such as a Box? Although I'd rather avoid any indirection...
EDIT
Ok I'm an idiot. First I missed the IndexMut instead of the Index, and I forgot the & when specifying the Self::Output in the signature.
Here's my full code below:
pub struct Id<T>(usize, PhantomData<T>);
impl<T> std::fmt::Display for Id<T> {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
write!(f, "{}", self.0)
}
}
impl<T> Hash for Id<T> {
fn hash<H: Hasher>(&self, state: &mut H) {
self.0.hash(state);
}
}
impl<T> PartialEq for Id<T> {
fn eq(&self, o: &Self) -> bool {
self.0 == o.0
}
}
impl<T> Eq for Id<T> {}
pub struct IdCollection<T>(HashMap<Id<T>, T>);
impl<'a, T> IntoIterator for &'a IdCollection<T> {
type Item = (&'a Id<T>, &'a T);
type IntoIter = std::collections::hash_map::Iter<'a, Id<T>, T>;
fn into_iter(self) -> Self::IntoIter {
self.0.iter()
}
}
impl<'a, T> IntoIterator for &'a mut IdCollection<T> {
type Item = (&'a Id<T>, &'a mut T);
type IntoIter = std::collections::hash_map::IterMut<'a, Id<T>, T>;
fn into_iter(self) -> Self::IntoIter {
self.0.iter_mut()
}
}
impl<T> std::ops::Index<Id<T>> for IdCollection<T> {
type Output = T;
fn index(&self, id: Id<T>) -> &Self::Output {
self.0.get(&id).unwrap()
}
}
impl<T> std::ops::IndexMut<Id<T>> for IdCollection<T> {
fn index_mut(&mut self, id: Id<T>) -> &mut Self::Output {
self.0.get_mut(&id).unwrap()
}
}
impl<T> std::ops::Index<&Id<T>> for IdCollection<T> {
type Output = T;
fn index(&self, id: &Id<T>) -> &Self::Output {
self.0.get(id).unwrap()
}
}
impl<T> std::ops::IndexMut<&Id<T>> for IdCollection<T> {
fn index_mut(&mut self, id: &Id<T>) -> &mut Self::Output {
self.0.get_mut(id).unwrap()
}
}
If I understand correctly what you try to achieve, then I have to tell you, that it is a bit more complex than you originally thought it would be.
First of all, you have to realise, that if you like to use a HashMap then the type of the key required to be hashable and comparable. Therefore the generic type parameter T in Id<T> has to be bound to those traits in order to make Id hashable and comparable.
The second thing you need to understand is that there are two different traits to deal with the indexing operator: Index for immutable data access, and IndexMut for mutable one.
use std::{
marker::PhantomData,
collections::HashMap,
cmp::{
Eq,
PartialEq,
},
ops::{
Index,
IndexMut,
},
hash::Hash,
};
#[derive(PartialEq, Hash)]
struct Id<T>(usize, PhantomData<T>)
where T: PartialEq + Hash;
impl<T> Eq for Id<T>
where T: PartialEq + Hash
{}
struct IdCollection<T>(HashMap<Id<T>, T>)
where T: PartialEq + Hash;
impl<T> Index<Id<T>> for IdCollection<T>
where T: PartialEq + Hash
{
type Output = T;
fn index(&self, id: Id<T>) -> &Self::Output
{
self.0.get(&id).unwrap()
}
}
impl<T> IndexMut<Id<T>> for IdCollection<T>
where T: PartialEq + Hash
{
fn index_mut(&mut self, id: Id<T>) -> &mut Self::Output
{
self.0.get_mut(&id).unwrap()
}
}
fn main()
{
let mut i = IdCollection(HashMap::new());
i.0.insert(Id(12, PhantomData), 99i32);
println!("{:?}", i[Id(12, PhantomData)]);
i[Id(12, PhantomData)] = 54i32;
println!("{:?}", i[Id(12, PhantomData)]);
}
It may seem a bit surprising, but IndexMut is not designed to insert an element into the collection but to actually modify an existing one. That's the main reason why HashMap does not implement IndexMut -- and that's also the reason why the above example uses the HashMap::insert method to initially place the data. As you can see, later on, when the value is already available we can modify it via the IdCollection::index_mut.

Wrong trait chosen based on type parameter

I have a binary trait Resolve.
pub trait Resolve<RHS = Self> {
type Output;
fn resolve(self, rhs: RHS) -> Self::Output;
}
I implemented the trait for something trivial where both arguments are taken by reference (self is &'a Foo and rhs is &'b Foo):
struct Foo;
impl <'a, 'b> Resolve<&'b Foo> for &'a Foo {
type Output = Foo;
fn resolve(self, rhs: &'b Foo) -> Self::Output {
unimplemented!()
}
}
If I now write
fn main() {
let a: &Foo = &Foo;
let b = Foo;
a.resolve(&b);
}
it will compile just fine, but if I try to implement it on my struct Signal, it will not work.
pub struct Signal<'a, T> {
ps: Vec<&'a T>,
}
impl<'a, T: Resolve<&'a T, Output = T> + 'a> Signal<'a, T> {
pub fn foo(&mut self) {
let a: &T = &self.ps[0];
let b = &self.ps[1];
a.resolve(b);
}
}
error[E0507]: cannot move out of borrowed content
--> src/main.rs:25:9
|
25 | a.resolve(b);
| ^ cannot move out of borrowed content
How do I get this example working? (playground)
The trait bound on foo only says that T implements Resolve, but you try to call .resolve() on a value of type &T.
To say, instead, that references to T must implement Resolve, you need a higher-ranked trait bound:
impl<'a, T> Signal<'a, T>
where
for<'b> &'b T: Resolve<&'a T, Output = T>,
{
pub fn foo(&mut self) { ... }
}
After thinking about this I came up with a simpler solution that does not rely on HRTB.
impl<'a, T> Signal<'a, T>
where
&'a T: Resolve<&'a T, Output = T> + 'a,
{
pub fn foo(&mut self) {
let a: &T = &self.ps[0];
let b = &self.ps[1];
a.resolve(b);
}
}
This does the same, namely describe, that &T implements Resolve, but without the need of HRTB.
You have to use the where clause for this, but apart from that this is a nice and easy solution.

Trait to store structs with different generic parameters

I need to store in the same Vec instances of the same struct, but with different generic parameters. This is the struct definition:
struct Struct<'a, T: 'a> {
items: Vec<&'a T>
}
The struct has a method returning an iterator to a type that does not depend on the generic type parameter T:
impl<'a, T: 'a> Struct<'a, T> {
fn iter(&self) -> slice::Iter<&i32> {
unimplemented!()
}
}
I need to access this method for those different structs in the vector, so I've implemented this trait:
type Iter<'a> = Iterator<Item=&'a i32>;
trait Trait {
fn iter(&self) -> Box<Iter>;
}
And I've implemented the trait for Struct:
impl<'a, T: 'a> Trait for Struct<'a, T> {
fn iter(&self) -> Box<Iter> {
Box::new(self.iter())
}
}
But the compiler complains:
<anon>:21:9: 21:30 error: type mismatch resolving `<core::slice::Iter<'_, &i32> as core::iter::Iterator>::Item == &i32`:
expected &-ptr,
found i32 [E0271]
<anon>:21 Box::new(self.iter())
^~~~~~~~~~~~~~~~~~~~~
<anon>:21:9: 21:30 help: see the detailed explanation for E0271
<anon>:21:9: 21:30 note: required for the cast to the object type `core::iter::Iterator<Item=&i32> + 'static`
<anon>:21 Box::new(self.iter())
^~~~~~~~~~~~~~~~~~~~~
I've tried different possibilities for lifetime parameters in the trait, but none of them work. How can I make this work?
Rust Playground snippet
Edit
As pointed out by #MatthieuM. one problem is that the type alias is not working properly. Here's another example demonstrating this:
use std::slice;
type Iter<'a> = Iterator<Item=&'a i32>;
struct Struct<'a> { _phantom: std::marker::PhantomData<&'a i32> }
impl<'a> Struct<'a> {
fn direct<'b>(i: &'b slice::Iter<'a, i32>) -> &'b Iterator<Item=&'a i32>
{ i }
fn aliased<'b>(i: &'b slice::Iter<'a, i32>) -> &'b Iter<'a>
{ i }
}
In this example, direct compiles, but aliased not, with the error:
<anon>:12:7: 12:8 error: the type `core::slice::Iter<'a, i32>` does not fulfill the required lifetime
<anon>:12 { i }
^
note: type must outlive the static lifetime
But they seem to be the same thing. What's happening?
Problem 1 — slice::Iter<T> has an Iterator::Item of &T, thus your reference levels are mismatched. Change your method to be
fn iter(&self) -> slice::Iter<i32>
Problem 2 — Box<SomeTrait> is equivalent to Box<SomeTrait + 'static>, but your iterator does not live for the 'static lifetime. You need to explicitly bring in a lifetime:
Box<SomeTrait + 'a>
Problem 3 — I don't understand how you can create a type alias for a trait, that seems very odd. You probably don't want it anyway. Instead, create a type alias for the whole boxed version:
type IterBox<'a> = Box<Iterator<Item=&'a i32> + 'a>;
Problem 4 — Rearrange your main so that references will live long enough and add mutability:
fn main() {
let i = 3;
let v = vec![&i];
let mut traits : Vec<Box<Trait>> = Vec::new();
traits.push(Box::new(Struct{ items: v }));
}
All together:
use std::slice;
type IterBox<'a> = Box<Iterator<Item=&'a i32> + 'a>;
trait Trait {
fn iter<'a>(&'a self) -> IterBox;
}
struct Struct<'a, T: 'a> {
items: Vec<&'a T>
}
impl<'a, T: 'a> Struct<'a, T> {
fn iter(&self) -> slice::Iter<i32> {
unimplemented!()
}
}
impl<'a, T: 'a> Trait for Struct<'a, T> {
fn iter(&self) -> IterBox {
Box::new(self.iter())
}
}
fn main() {
let i = 3;
let v = vec![&i];
let mut traits: Vec<Box<Trait>> = Vec::new();
traits.push(Box::new(Struct { items: v }));
}

Implementing Deref on a struct that owns a boxed trait

I'd like to implement Deref and DefrefMut on a struct that owns a boxed trait, e.g.:
use std::ops::{Deref, DerefMut};
trait Quack {
fn quack(&self);
}
struct QuackWrap {
value: Box<Quack>
}
impl Deref for QuackWrap {
type Target = Box<Quack>;
fn deref<'a>(&'a self) -> &'a Box<Quack> {
&self.value
}
}
impl DerefMut for QuackWrap {
fn deref_mut<'a>(&'a mut self) -> &'a mut Box<Quack> {
&mut self.value
}
}
This fails to compile with the following error:
src/main.rs:14:5: 16:6 error: method `deref` has an incompatible type for trait: expected bound lifetime parameter 'a, found concrete lifetime [E0053]
src/main.rs:14 fn deref<'a>(&'a self) -> &'a Box<Quack> {
src/main.rs:15 &self.value
src/main.rs:16 }
src/main.rs:20:5: 22:6 error: method `deref_mut` has an incompatible type for trait: expected bound lifetime parameter 'a, found concrete lifetime [E0053]
src/main.rs:20 fn deref_mut<'a>(&'a mut self) -> &'a mut Box<Quack> {
src/main.rs:21 &mut self.value
src/main.rs:22 }
If I replace Box<Quack> with Box<String> (or a similar type), it works. The problem is that Quack is a trait. But I'm not sure why that generated the error message it did. Any ideas?
My question is similar to another SO question, but not quite the same. In that question, the struct has a type parameter with the trait as a constraint. Whereas in my question, there is no type parameter.
I don't want to confuse the issues, but there's a good reason that I need Box<Quack> in my application. I.e. I can't replace Quack with a type parameter. In case you care, the reason is discussed further in another SO question.
When in doubt, add more lifetime annotations:
use std::ops::{Deref, DerefMut};
trait Quack {
fn quack(&self);
}
struct QuackWrap<'b> {
value: Box<Quack + 'b>
}
impl<'b> Deref for QuackWrap<'b>{
type Target = Box<Quack + 'b>;
fn deref<'a>(&'a self) -> &'a Box<Quack + 'b> {
&self.value
}
}
impl<'b> DerefMut for QuackWrap<'b> {
fn deref_mut<'a>(&'a mut self) -> &'a mut Box<Quack + 'b> {
&mut self.value
}
}
Based on Brian's answer and Shepmaster's explanation, I updated my code as follow. I also simplified the QuackWrap struct. (That wasn't strictly necessary, but it's arguably better style than what I was doing before.)
use std::ops::{Deref, DerefMut};
trait Quack {
fn quack(&self);
}
struct QuackWrap(Box<Quack>);
impl Deref for QuackWrap {
type Target = Box<Quack + 'static>;
fn deref<'a>(&'a self) -> &'a Box<Quack + 'static> {
let QuackWrap(ref v) = *self;
v
}
}
impl DerefMut for QuackWrap {
fn deref_mut<'a>(&'a mut self) -> &'a mut Box<Quack + 'static> {
let QuackWrap(ref mut v) = *self;
v
}
}
There may be a more concise way to destructure QuackWrap in the deref and deref_mut implementations. Some of those more obscure syntax rules elude me. But for now this is fine.

Resources