void transaction(Account from, Account to, double amount)
{
Semaphore lock1, lock2;
lock1 =getLock(from);
lock2 = getLock(to);
wait(lock1);
wait(lock2);
withdraw(from, amount);
deposit(to, amount);
signal(lock2);
signal (lock1) ;
}
The transaction function transfers funds between two accounts. To prevent a
race condition, each account has an associated semaphore that is obtained from
a get Lock () function such as the following: .I am not able to understand how the semaphores are working here, can someone help explain the functionality of semaphores and getLock functions here.
What is happening in each execution of wait and signal ?
How can a Deadlock occur if 2 threads invoke Transaction(x,y,25) and Transaction(y,x,30) simultaneously?
Related
I have N threads performing various task and these threads must be regularly synchronized with a thread barrier as illustrated below with 3 thread and 8 tasks. The || indicates the temporal barrier, all threads have to wait until the completion of 8 tasks before starting again.
Thread#1 |----task1--|---task6---|---wait-----||-taskB--| ...
Thread#2 |--task2--|---task5--|-------taskE---||----taskA--| ...
Thread#3 |-task3-|---task4--|-taskG--|--wait--||-taskC-|---taskD ...
I couldn’t find a workable solution, thought the little book of Semaphores http://greenteapress.com/semaphores/index.html was inspiring. I came up with a solution using std::atomic shown below which “seems” to be working using three std::atomic.
I am worried about my code breaking down on corner cases hence the quoted verb. So can you share advise on verification of such code? Do you have a simpler fool proof code available?
std::atomic<int> barrier1(0);
std::atomic<int> barrier2(0);
std::atomic<int> barrier3(0);
void my_thread()
{
while(1) {
// pop task from queue
...
// and execute task
switch(task.id()) {
case TaskID::Barrier:
barrier2.store(0);
barrier1++;
while (barrier1.load() != NUM_THREAD) {
std::this_thread::yield();
}
barrier3.store(0);
barrier2++;
while (barrier2.load() != NUM_THREAD) {
std::this_thread::yield();
}
barrier1.store(0);
barrier3++;
while (barrier3.load() != NUM_THREAD) {
std::this_thread::yield();
}
break;
case TaskID::Task1:
...
}
}
}
Boost offers a barrier implementation as an extension to the C++11 standard thread library. If using Boost is an option, you should look no further than that.
If you have to rely on standard library facilities, you can roll your own implementation based on std::mutex and std::condition_variable without too much of a hassle.
class Barrier {
int wait_count;
int const target_wait_count;
std::mutex mtx;
std::condition_variable cond_var;
Barrier(int threads_to_wait_for)
: wait_count(0), target_wait_count(threads_to_wait_for) {}
void wait() {
std::unique_lock<std::mutex> lk(mtx);
++wait_count;
if(wait_count != target_wait_count) {
// not all threads have arrived yet; go to sleep until they do
cond_var.wait(lk,
[this]() { return wait_count == target_wait_count; });
} else {
// we are the last thread to arrive; wake the others and go on
cond_var.notify_all();
}
// note that if you want to reuse the barrier, you will have to
// reset wait_count to 0 now before calling wait again
// if you do this, be aware that the reset must be synchronized with
// threads that are still stuck in the wait
}
};
This implementation has the advantage over your atomics-based solution that threads waiting in condition_variable::wait should get send to sleep by your operating system's scheduler, so you don't block CPU cores by having waiting threads spin on the barrier.
A few words on resetting the barrier: The simplest solution is to just have a separate reset() method and have the user ensure that reset and wait are never invoked concurrently. But in many use cases, this is not easy to achieve for the user.
For a self-resetting barrier, you have to consider races on the wait count: If the wait count is reset before the last thread returned from wait, some threads might get stuck in the barrier. A clever solution here is to not have the terminating condition depend on the wait count variable itself. Instead you introduce a second counter, that is only increased by the thread calling the notify. The other threads then observe that counter for changes to determine whether to exit the wait:
void wait() {
std::unique_lock<std::mutex> lk(mtx);
unsigned int const current_wait_cycle = m_inter_wait_count;
++wait_count;
if(wait_count != target_wait_count) {
// wait condition must not depend on wait_count
cond_var.wait(lk,
[this, current_wait_cycle]() {
return m_inter_wait_count != current_wait_cycle;
});
} else {
// increasing the second counter allows waiting threads to exit
++m_inter_wait_count;
cond_var.notify_all();
}
}
This solution is correct under the (very reasonable) assumption that all threads leave the wait before the inter_wait_count overflows.
With atomic variables, using three of them for a barrier is simply overkill that only serves to complicate the issue. You know the number of threads, so you can simply atomically increment a single counter every time a thread enters the barrier, and then spin until the counter becomes greater or equal to N. Something like this:
void barrier(int N) {
static std::atomic<unsigned int> gCounter = 0;
gCounter++;
while((int)(gCounter - N) < 0) std::this_thread::yield();
}
If you don't have more threads than CPU cores and a short expected waiting time, you might want to remove the call to std::this_thread::yield(). This call is likely to be really expensive (more than a microsecond, I'd wager, but I haven't measured it). Depending on the size of your tasks, this may be significant.
If you want to do repeated barriers, just increment the N as you go:
unsigned int lastBarrier = 0;
while(1) {
switch(task.id()) {
case TaskID::Barrier:
barrier(lastBarrier += processCount);
break;
}
}
I would like to point out that in the solution given by #ComicSansMS ,
wait_count should be reset to 0 before executing cond_var.notify_all();
This is because when the barrier is called a second time the if condition will always fail, if wait_count is not reset to 0.
Given the following C++11 code fragment:
#include <condition_variable>
#include <mutex>
std::mutex block;
long count;
std::condition_variable cv;
void await()
{
std::unique_lock<std::mutex> lk(block);
if (count > 0)
cv.wait(lk);
}
void countDown()
{
std::lock_guard<std::mutex> lk(block);
if (count > 0)
{
count--;
if (count==0) cv.notify_all();
}
}
If it is not clear what I am trying to accomplish, I am wanting calls to await to pause the calling thread while count is greater than 0, and if it has already been reduced to zero, then it should not pause at all. Other threads may call countDown() which will wake all threads that had previously called await.
The above code seems to work in all cases that I've tried, but I have this nagging doubt about it, because it seems to me like there is a possibility for unexpected behavior if the thread calling await() just happens to get preempted immediately after its condition test has been evaluated and just before the thread is actually suspended by the cv.wait() call, and if the countDown function is getting called at this time, and the count equals 0, then it would issue a notify to the condition variable, IF it were actually already waiting on it... but the thread calling await hasn't hit the cv.wait() call yet, so when the thread calling await resumes, it stops at the cv.wait() call and waits indefinitely.
I actually haven't seen this happen yet in practice, but I would like to harden the code against the eventuality.
It is good that you are thinking about these possibilities. But in this case your code is correct and safe.
If await gets preempted immediately after its condition test has been evaluated and just before the thread is actually suspended by the cv.wait() call, and if the countDown function is getting called at this time, the latter thread will block while trying to obtain the block mutex until await actually calls cv.wait(lk).
The call to cv.wait(lk) implicitly releases the lock on block, and thus now another thread can obtain the lock on block in countDown(). And as long as a thread holds the lock on block in countDown() (even after cv.notify_all() is called), the await thread can not return from cv.wait(). The await thread implicitly blocks on trying to re-lock block during the return from cv.wait().
Update
I did make a rookie mistake while reviewing your code though <blush>.
cv.wait(lk) may return spuriously. That is, it may return even though it hasn't been notified. To guard against this you should place your wait under a while loop, instead of under an if:
void await()
{
std::unique_lock<std::mutex> lk(block);
while (count > 0)
cv.wait(lk);
}
Now if the wait returns spuriously, it re-checks the condition, and if still not satisfied, waits again.
UINT __stdcall CExternal::WorkThread( void * pParam)
{
HRESULT hr;
CTaskBase* pTask;
CComPtr<IHTMLDocument3> spDoc3;
CExternal* pThis = reinterpret_cast<CExternal*>(pParam);
if (pThis == NULL)
return 0;
// Init the com
::CoInitializeEx(0,COINIT_APARTMENTTHREADED);
hr = ::CoGetInterfaceAndReleaseStream(
pThis->m_pStream_,
IID_IHTMLDocument3,
(void**)&spDoc3);
if(FAILED(hr))
return 0;
while (pThis->m_bShutdown_ == 0)
{
if(pThis->m_TaskList_.size())
{
pTask = pThis->m_TaskList_.front();
pThis->m_TaskList_.pop_front();
if(pTask)
{
pTask->doTask(spDoc3); //do my custom task
delete pTask;
}
}
else
{
Sleep(10);
}
}
OutputDebugString(L"start CoUninitialize\n");
::CoUninitialize(); //release com
OutputDebugString(L"end CoUninitialize\n");
return 0;
}
The above the code that let my thread hang, the only output is "start CoUninitialize".
m_hWorker_ = (HANDLE)_beginthreadex(NULL, 0, WorkThread, this, 0, 0);
This code starts my thread, but the thread can't exit safely, so it waits. What the problem with this code?
The problem is not in this code, although it violates core COM requirements. Which says that you should release interface pointers when you no longer use them, calling IUnknown::Release(), and that an apartment-threaded thread must pump a message loop. Especially the message loop is important, you'll get deadlock when the owner thread of a single-threaded object (like a browser) is not pumping.
CoUninitialize() is forced to clean up the interface pointer wrapped by spDoc3 since you didn't do this yourself. It is clear from the code that the owner of the interface pointer actually runs on another thread, something to generally keep in mind since that pretty much defeats the point of starting your own worker thread. Creating your own STA thread doesn't fix this, it is still the wrong thread.
So the proxy needs to context switch to the apartment that owns the browser object. With the hard requirement that this apartment pumps a message loop so that the call can be dispatched on the right thread in order to safely call the Release() function. With very high odds that this thread isn't pumping messages anymore when your program is shutting down. Something you should be able to see in the debugger, locate the owner thread in the Debug + Windows + Threads window and see what it is doing.
Deadlock is the common outcome. The only good way to fix it is to shut down threads in the right order, this one has to shut down before the thread that owns the browser object. Shutting down a multi-threaded program cleanly can be quite difficult when threads have an interdependency like this. The inspiration behind the C++11 std::quick_exit() addition.
I'm trying to implement a sort of thread pool whereby I keep threads in a FIFO and process a bunch of images. Unfortunately, for some reason my cond_wait doesn't always wake even though it's been signaled.
// Initialize the thread pool
for(i=0;i<numThreads;i++)
{
pthread_t *tmpthread = (pthread_t *) malloc(sizeof(pthread_t));
struct Node* newNode;
newNode=(struct Node *) malloc(sizeof(struct Node));
newNode->Thread = tmpthread;
newNode->Id = i;
newNode->threadParams = 0;
pthread_cond_init(&(newNode->cond),NULL);
pthread_mutex_init(&(newNode->mutx),NULL);
pthread_create( tmpthread, NULL, someprocess, (void*) newNode);
push_back(newNode, &threadPool);
}
for() //stuff here
{
//...stuff
pthread_mutex_lock(&queueMutex);
struct Node *tmpNode = pop_front(&threadPool);
pthread_mutex_unlock(&queueMutex);
if(tmpNode != 0)
{
pthread_mutex_lock(&(tmpNode->mutx));
pthread_cond_signal(&(tmpNode->cond)); // Not starting mutex sometimes?
pthread_mutex_unlock(&(tmpNode->mutx));
}
//...stuff
}
destroy_threads=1;
//loop through and signal all the threads again so they can exit.
//pthread_join here
}
void *someprocess(void* threadarg)
{
do
{
//...stuff
pthread_mutex_lock(&(threadNode->mutx));
pthread_cond_wait(&(threadNode->cond), &(threadNode->mutx));
// Doesn't always seem to resume here after signalled.
pthread_mutex_unlock(&(threadNode->mutx));
} while(!destroy_threads);
pthread_exit(NULL);
}
Am I missing something? It works about half of the time, so I would assume that I have a race somewhere, but the only thing I can think of is that I'm screwing up the mutexes? I read something about not signalling before locking or something, but I don't really understand what's going on.
Any suggestions?
Thanks!
Firstly, your example shows you locking the queueMutex around the call to pop_front, but not round push_back. Typically you would need to lock round both, unless you can guarantee that all the pushes happen-before all the pops.
Secondly, your call to pthread_cond_wait doesn't seem to have an associated predicate. Typical usage of condition variables is:
pthread_mutex_lock(&mtx);
while(!ready)
{
pthread_cond_wait(&cond,&mtx);
}
do_stuff();
pthread_mutex_unlock(&mtx);
In this example, ready is some variable that is set by another thread whilst that thread holds a lock on mtx.
If the waiting thread is not blocked in the pthread_cond_wait when pthread_cond_signal is called then the signal will be ignored. The associated ready variable allows you to handle this scenario, and also allows you to handle so-called spurious wake-ups where the call to pthread_cond_wait returns without a corresponding call to pthread_cond_signal from another thread.
I'm not sure, but I think you don't have to (you must not) lock the mutex in the thread pool before calling pthread_cond_signal(&(tmpNode->cond)); , otherwise, the thread which is woken up won't be able to lock the mutex as part of pthread_cond_wait(&(threadNode->cond), &(threadNode->mutx)); operation.
i have a question about thread situation.
Suppose i have 3 threads :producer,helper and consumer.
the producer thread is in running state(and other two are in waiting state)and when its done it calls invoke,but the problem it has to invoke only helper thread not consumer,then how it can make sure that after it releases resources are to be fetched by helper thread only and then by consumer thread.
thanks in advance
Or have you considered, sometimes having separate threads is more of a problem than a solution?
If you really want the operations in one thread to be strictly serialized with the operations in another thread, perhaps the simpler solution is to discard the second thread and structure the code so the first thread does the operations in the order desired.
This may not always be possible, but it's something to bear in mind.
You could have, for instance, two mutexes (or whatever you are using): one for producer and helper, and other for producer and consumer
Producer:
//lock helper
while true
{
//lock consumer
//do stuff
//release and invoke helper
//wait for helper to release
//lock helper again
//unlock consumer
//wait consumer
}
The others just lock and unlock normally.
Another possible approach (maybe better) is using a mutex for producer / helper, and other helper / consumer; or maybe distribute this helper thread tasks between the other two threads. Could you give more details?
The helper thread is really just a consumer/producer thread itself. Write some code for the helper like you would for any other consumer to take the result of the producer. Once that's complete write some code for the helper like you would for any other producer and hook it up to your consumer thread.
You might be able to use queues to help you with this with locks around them.
Producer works on something, produces it, and puts it on the helper queue.
Helper takes it, does something with it, and then puts it on the consumer queue.
Consumer take its, consumes it, and goes on.
Something like this:
Queue<MyDataType> helperQ, consumerQ;
object hqLock = new object();
object cqLock = new object();
// producer thread
private void ProducerThreadFunc()
{
while(true)
{
MyDataType data = ProduceNewData();
lock(hqLock)
{
helperQ.Enqueue(data);
}
}
}
// helper thread
private void HelperThreadFunc()
{
while(true)
{
MyDataType data;
lock(hqLock)
{
data = helperQ.Dequeue();
}
data = HelpData(data);
lock(cqLock)
{
consumerQ.Enqueue(data);
}
}
}
// consumer thread
private void ConsumerThreadFunc()
{
while(true)
{
MyDataType data;
lock(cqLock)
{
data = consumerQ.Dequeue();
}
Consume(data);
}
}
NOTE: You will need to add more logic to this example to make sure usable. Don't expect it to work as-is. Mainly, use signals for one thread to let the other know that data is available in its queue (or as a worst case poll the size of the queue to make sure it is greater than 0 , if it is 0, then sleep -- but the signals are cleaner and more efficient).
This approach would let you process data at different rates (which can lead to memory issues).