I want to add 1 in column values if column value is greater than 2
here is my dataframe
df=pd.DataFrame({'A':[1,1,1,1,1,1,3,2,2,2,2,2,2],'flag':[1,1,0,1,1,1,5,1,1,0,1,1,1]})
df_out
df=pd.DataFrame({'A':[1,1,1,1,1,1,3,2,2,2,2,2,2],'flag':[1,1,0,1,1,1,6,1,1,0,1,1,1]})
Use DataFrame.loc with add 1:
df.loc[df.A.gt(2), 'flag'] += 1
print (df)
A flag
0 1 1
1 1 1
2 1 0
3 1 1
4 1 1
5 1 1
6 3 6
7 2 1
8 2 1
9 2 0
10 2 1
11 2 1
12 2 1
Or:
df['flag'] = np.where(df.A.gt(2), df['flag'] + 1, df['flag'])
EDIT:
mean = df.groupby(pd.cut(df['x'], bins))['y'].transform('mean')
df['flag'] = np.where(mean.gt(2), df['y'] + 1, df['y'])
And then:
x= df.groupby(pd.cut(df['x'], bins))['y'].apply(lambda x:abs(x-np.mean(x)))
I have table in df:
X1 X2
1 1
1 2
2 2
2 2
3 3
3 3
And i want calculate Y, where Y = Yprevious + 1 if X1=X1previous and X2=X2previous, elso 0. Y on first line = 0. Example.
X1 X2 Y
1 1 0
2 2 0
2 2 1
2 2 2
2 2 3
3 3 0
Not a duplicate... Previously, the question was simpler - addition with a value in a specific line. Now the term appears in the calculation process. I need some cumulative calculation
What I need, more example:
X1 X2 Y
1 1 0
2 2 0
2 2 1
2 2 2
2 2 3
3 3 0
3 3 1
2 2 0
What I get on the link to the duplicate
X1 X2 Y
1 1 0
2 2 0
2 2 1
2 2 2
2 2 3
3 3 0
3 3 1
2 2 4
Use GroupBy.cumcount with new columns by consecutive values:
df1 = df[['X1','X2']].ne(df[['X1','X2']].shift()).cumsum()
df['Y'] = df.groupby([df1['X1'], df1['X2']]).cumcount()
print (df)
X1 X2 Y
0 1 1 0
1 2 2 0
2 2 2 1
3 2 2 2
4 2 2 3
5 3 3 0
6 3 3 1
7 2 2 0
I have IDs with system event times, and I have grouped the event times by id (individual systems) and made a new column where the value is 1 if the eventtimes.diff() is greater than 1 day, else 0 . Now that I have the flag I am trying to make a function that will be applied to groupby('ID') so the new column starts with 1 and keeps returning 1 for each row in the new column until the flag shows 1 then the new column will go up 1, to 2 and keep returning 2 until the flag shows 1 again.
I will apply this along with groupby('ID') since I need the new column to start over again at 1 for each ID.
I have tried to the following:
def try(x):
y = 1
if row['flag']==0:
y = y
else:
y += y+1
df['NewCol'] = df.groupby('ID')['flag'].apply(try)
I have tried differing variations of the above to no avail. Thanks in advance for any help you may provide.
Also, feel free to let me know if I messed up posting the question. Not sure if my title is great either.
Use boolean indexing for filtering + cumcount + reindex what is much faster solution as loopy apply :
I think you need for count only 1 per group and if no 1 then 1 is added to output:
df = pd.DataFrame({
'ID': ['a','a','a','a','b','b','b','b','b'],
'flag': [0,0,1,1,0,0,1,1,1]
})
df['new'] = (df[df['flag'] == 1].groupby('ID')['flag']
.cumcount()
.add(1)
.reindex(df.index, fill_value=1))
print (df)
ID flag new
0 a 0 1
1 a 0 1
2 a 1 1
3 a 1 2
4 b 0 1
5 b 0 1
6 b 1 1
7 b 1 2
8 b 1 3
Detail:
#filter by condition
print (df[df['flag'] == 1])
ID flag
2 a 1
3 a 1
6 b 1
7 b 1
8 b 1
#count per group
print (df[df['flag'] == 1].groupby('ID')['flag'].cumcount())
2 0
3 1
6 0
7 1
8 2
dtype: int64
#add 1 for count from 1
print (df[df['flag'] == 1].groupby('ID')['flag'].cumcount().add(1))
2 1
3 2
6 1
7 2
8 3
dtype: int64
If need count 0 and if no 0 is added -1:
df['new'] = (df[df['flag'] == 0].groupby('ID')['flag']
.cumcount()
.add(1)
.reindex(df.index, fill_value=-1))
print (df)
ID flag new
0 a 0 1
1 a 0 2
2 a 1 -1
3 a 1 -1
4 b 0 1
5 b 0 2
6 b 1 -1
7 b 1 -1
8 b 1 -1
Another 2 step solution:
df['new'] = df[df['flag'] == 1].groupby('ID')['flag'].cumcount().add(1)
df['new'] = df['new'].fillna(1).astype(int)
print (df)
ID flag new
0 a 0 1
1 a 0 1
2 a 1 1
3 a 1 2
4 b 0 1
5 b 0 1
6 b 1 1
7 b 1 2
8 b 1 3
I have DataFrame containing three columns:
The incrementor
The incremented
Other
I would like lengthen the DataFrame in a particular way. In each row, I want to add a number of rows, depending on the incrementor, and in these rows we increment the incremented, while the "other" is just replicated.
I made a small example which makes it more clear:
df = pd.DataFrame([[2,1,3], [5,20,0], ['a','b','c']]).transpose()
df.columns = ['incrementor', 'incremented', 'other']
df
incrementor incremented other
0 2 5 a
1 1 20 b
2 3 0 c
The desired output is:
incrementor incremented other
0 2 5 a
1 2 6 a
2 1 20 b
3 3 0 c
4 3 1 c
5 3 2 c
Is there a way to do this elegantly and efficiently with Pandas? Or is there no way to avoid looping?
First get repeated rows on incrementor using repeat and .loc
In [1029]: dff = df.loc[df.index.repeat(df.incrementor.astype(int))]
Then, modify incremented with cumcount
In [1030]: dff.assign(
incremented=dff.incremented + dff.groupby(level=0).incremented.cumcount()
).reset_index(drop=True)
Out[1030]:
incrementor incremented other
0 2 5 a
1 2 6 a
2 1 20 b
3 3 0 c
4 3 1 c
5 3 2 c
Details
In [1031]: dff
Out[1031]:
incrementor incremented other
0 2 5 a
0 2 5 a
1 1 20 b
2 3 0 c
2 3 0 c
2 3 0 c
In [1032]: dff.groupby(level=0).incremented.cumcount()
Out[1032]:
0 0
0 1
1 0
2 0
2 1
2 2
dtype: int64
I'm rather new at python.
I try to have a cumulative sum for each client to see the consequential months of inactivity (flag: 1 or 0). The cumulative sum of the 1's need therefore to be reset when we have a 0. The reset need to happen as well when we have a new client. See below with example where a is the column of clients and b are the dates.
After some research, I found the question 'Cumsum reset at NaN' and 'In Python Pandas using cumsum with groupby'. I assume that I kind of need to put them together.
Adapting the code of 'Cumsum reset at NaN' to the reset towards 0, is successful:
cumsum = v.cumsum().fillna(method='pad')
reset = -cumsum[v.isnull() !=0].diff().fillna(cumsum)
result = v.where(v.notnull(), reset).cumsum()
However, I don't succeed at adding a groupby. My count just goes on...
So, a dataset would be like this:
import pandas as pd
df = pd.DataFrame({'a' : [1,1,1,1,1,1,1,2,2,2,2,2,2,2],
'b' : [1/15,2/15,3/15,4/15,5/15,6/15,1/15,2/15,3/15,4/15,5/15,6/15],
'c' : [1,0,1,0,1,1,0,1,1,0,1,1,1,1]})
this should result in a dataframe with the columns a, b, c and d with
'd' : [1,0,1,0,1,2,0,1,2,0,1,2,3,4]
Please note that I have a very large dataset, so calculation time is really important.
Thank you for helping me
Use groupby.apply and cumsum after finding contiguous values in the groups. Then groupby.cumcount to get the integer counting upto each contiguous value and add 1 later.
Multiply with the original row to create the AND logic cancelling all zeros and only considering positive values.
df['d'] = df.groupby('a')['c'] \
.apply(lambda x: x * (x.groupby((x != x.shift()).cumsum()).cumcount() + 1))
print(df['d'])
0 1
1 0
2 1
3 0
4 1
5 2
6 0
7 1
8 2
9 0
10 1
11 2
12 3
13 4
Name: d, dtype: int64
Another way of doing would be to apply a function after series.expanding on the groupby object which basically computes values on the series starting from the first index upto that current index.
Use reduce later to apply function of two args cumulatively to the items of iterable so as to reduce it to a single value.
from functools import reduce
df.groupby('a')['c'].expanding() \
.apply(lambda i: reduce(lambda x, y: x+1 if y==1 else 0, i, 0))
a
1 0 1.0
1 0.0
2 1.0
3 0.0
4 1.0
5 2.0
6 0.0
2 7 1.0
8 2.0
9 0.0
10 1.0
11 2.0
12 3.0
13 4.0
Name: c, dtype: float64
Timings:
%%timeit
df.groupby('a')['c'].apply(lambda x: x * (x.groupby((x != x.shift()).cumsum()).cumcount() + 1))
100 loops, best of 3: 3.35 ms per loop
%%timeit
df.groupby('a')['c'].expanding().apply(lambda s: reduce(lambda x, y: x+1 if y==1 else 0, s, 0))
1000 loops, best of 3: 1.63 ms per loop
I think you need custom function with groupby:
#change row with index 6 to 1 for better testing
df = pd.DataFrame({'a' : [1,1,1,1,1,1,1,2,2,2,2,2,2,2],
'b' : [1/15,2/15,3/15,4/15,5/15,6/15,1/15,2/15,3/15,4/15,5/15,6/15,7/15,8/15],
'c' : [1,0,1,0,1,1,1,1,1,0,1,1,1,1],
'd' : [1,0,1,0,1,2,3,1,2,0,1,2,3,4]})
print (df)
a b c d
0 1 0.066667 1 1
1 1 0.133333 0 0
2 1 0.200000 1 1
3 1 0.266667 0 0
4 1 0.333333 1 1
5 1 0.400000 1 2
6 1 0.066667 1 3
7 2 0.133333 1 1
8 2 0.200000 1 2
9 2 0.266667 0 0
10 2 0.333333 1 1
11 2 0.400000 1 2
12 2 0.466667 1 3
13 2 0.533333 1 4
def f(x):
x.ix[x.c == 1, 'e'] = 1
a = x.e.notnull()
x.e = a.cumsum()-a.cumsum().where(~a).ffill().fillna(0).astype(int)
return (x)
print (df.groupby('a').apply(f))
a b c d e
0 1 0.066667 1 1 1
1 1 0.133333 0 0 0
2 1 0.200000 1 1 1
3 1 0.266667 0 0 0
4 1 0.333333 1 1 1
5 1 0.400000 1 2 2
6 1 0.066667 1 3 3
7 2 0.133333 1 1 1
8 2 0.200000 1 2 2
9 2 0.266667 0 0 0
10 2 0.333333 1 1 1
11 2 0.400000 1 2 2
12 2 0.466667 1 3 3
13 2 0.533333 1 4 4