python: what does the colon mean? - python-3.x

I am trying to read the code simpy, but i have some questions.
def __init__(self, initial_time: SimTime = 0):
self._now = initial_time
self._queue: List[
Tuple[SimTime, EventPriority, int, Event]
] = [] # The list of all currently scheduled events.
self._eid = count() # Counter for event IDs
self._active_proc: Optional[Process] = None
# Bind all BoundClass instances to "self" to improve performance.
BoundClass.bind_early(self)
what does the colon mean?
initial_time: SimTime = 0
self._queue: List[Tuple[SimTime, EventPriority, int, Event]] = []
thanks for your help.

It seems to be a Typedef Hint for a defined variable, with a special type of SimTime with value 0 being passed into the function.
If you get a chance, check out PEP483, PEP484, as well as the typing module for more information on Typedef hints.
Since it seems to be an uncommon type, I would check for Type Aliases as well. PEP613 is about Type Aliases.
I don't know what else it could be, but maybe it is something else.

Related

What is the purpose of specifiying types in Python exactly

Recently I had a problem reading information from a .ini file to a int type variable:
var:int = config['example']['var']
The .ini file is something like this:
Using configparser to read the value pass it as '3' instead of 3.
I must add that I know I can convert it to int by using int(var) (that's how I fixed it by the way), but that is not the point of this question.
The variable type is a int and the configparser read the value from the file as a string and successfully changes the variable type to a string, the code worked for multiple days until I had a bug, the interpreter indicates I was trying to compare a string type with an int type, by this point I was so far into the code I wasted 10 minutes pinpointing the source of the bug.
Here's a example code:
class testclass:
def __init__(self, var:int): #Specifying that var should be a int
self._storage:int = var #specifiying that _storage should be a int
#property
def get(self) -> int: #specifiying that get method should return a int
return self._storage
#Expected behaviour
correct = 1
test1 = testclass(correct)
#Passing a string when it should be a integer
wrong = '1'
test2 = testclass(wrong)
print('test1 type = ' + str(type(test1.get)))
print('test2 type = ' + str(type(test2.get)))
And it's output:
test1 type = <class 'int'>
test2 type = <class 'str'>
As you can see I made sure to specify the type of every single method and variable so I couldn't unknowingly pass the wrong type by mistake (which is exactly what I did), but it did not make any difference, whats is the point of :int and -> int and what should I do the lock arguments/variables/methods etc. to a variable type so I can't shoot myself on the foot in the future?
Python doesn't force types. You can pass other types even if you specified a type. However, you can use a Python Linter such as mypy and it will warn you when you pass the wrong type.
Note: The program will run, even if you use mypy, but you will see a warning while writing the code.

In Python, how can I type hint a list with an empty default value?

I would like to make a function that looks like this, but I'm aware that default arguments should never be mutable:
def foo(req_list: list, opt_list: list = []):
...
Without type hinting, I know the way to have an optional parameter default to an empty list is:
def bar(req_list, opt_list=None):
if opt_list == None:
opt_list = []
...
But I'm not sure of the correct way to do this with type hinting.
what you have is semantically correct. although I would do this, kind of echoing your second code block.
def foo(req_list: list, opt_list: list | None = None):
if opt_list is None:
opt_list = []
...

Is there a way changing actual value of an int without creating a new instance? [duplicate]

How can I pass an integer by reference in Python?
I want to modify the value of a variable that I am passing to the function. I have read that everything in Python is pass by value, but there has to be an easy trick. For example, in Java you could pass the reference types of Integer, Long, etc.
How can I pass an integer into a function by reference?
What are the best practices?
It doesn't quite work that way in Python. Python passes references to objects. Inside your function you have an object -- You're free to mutate that object (if possible). However, integers are immutable. One workaround is to pass the integer in a container which can be mutated:
def change(x):
x[0] = 3
x = [1]
change(x)
print x
This is ugly/clumsy at best, but you're not going to do any better in Python. The reason is because in Python, assignment (=) takes whatever object is the result of the right hand side and binds it to whatever is on the left hand side *(or passes it to the appropriate function).
Understanding this, we can see why there is no way to change the value of an immutable object inside a function -- you can't change any of its attributes because it's immutable, and you can't just assign the "variable" a new value because then you're actually creating a new object (which is distinct from the old one) and giving it the name that the old object had in the local namespace.
Usually the workaround is to simply return the object that you want:
def multiply_by_2(x):
return 2*x
x = 1
x = multiply_by_2(x)
*In the first example case above, 3 actually gets passed to x.__setitem__.
Most cases where you would need to pass by reference are where you need to return more than one value back to the caller. A "best practice" is to use multiple return values, which is much easier to do in Python than in languages like Java.
Here's a simple example:
def RectToPolar(x, y):
r = (x ** 2 + y ** 2) ** 0.5
theta = math.atan2(y, x)
return r, theta # return 2 things at once
r, theta = RectToPolar(3, 4) # assign 2 things at once
Not exactly passing a value directly, but using it as if it was passed.
x = 7
def my_method():
nonlocal x
x += 1
my_method()
print(x) # 8
Caveats:
nonlocal was introduced in python 3
If the enclosing scope is the global one, use global instead of nonlocal.
Maybe it's not pythonic way, but you can do this
import ctypes
def incr(a):
a += 1
x = ctypes.c_int(1) # create c-var
incr(ctypes.ctypes.byref(x)) # passing by ref
Really, the best practice is to step back and ask whether you really need to do this. Why do you want to modify the value of a variable that you're passing in to the function?
If you need to do it for a quick hack, the quickest way is to pass a list holding the integer, and stick a [0] around every use of it, as mgilson's answer demonstrates.
If you need to do it for something more significant, write a class that has an int as an attribute, so you can just set it. Of course this forces you to come up with a good name for the class, and for the attribute—if you can't think of anything, go back and read the sentence again a few times, and then use the list.
More generally, if you're trying to port some Java idiom directly to Python, you're doing it wrong. Even when there is something directly corresponding (as with static/#staticmethod), you still don't want to use it in most Python programs just because you'd use it in Java.
Maybe slightly more self-documenting than the list-of-length-1 trick is the old empty type trick:
def inc_i(v):
v.i += 1
x = type('', (), {})()
x.i = 7
inc_i(x)
print(x.i)
A numpy single-element array is mutable and yet for most purposes, it can be evaluated as if it was a numerical python variable. Therefore, it's a more convenient by-reference number container than a single-element list.
import numpy as np
def triple_var_by_ref(x):
x[0]=x[0]*3
a=np.array([2])
triple_var_by_ref(a)
print(a+1)
output:
7
The correct answer, is to use a class and put the value inside the class, this lets you pass by reference exactly as you desire.
class Thing:
def __init__(self,a):
self.a = a
def dosomething(ref)
ref.a += 1
t = Thing(3)
dosomething(t)
print("T is now",t.a)
In Python, every value is a reference (a pointer to an object), just like non-primitives in Java. Also, like Java, Python only has pass by value. So, semantically, they are pretty much the same.
Since you mention Java in your question, I would like to see how you achieve what you want in Java. If you can show it in Java, I can show you how to do it exactly equivalently in Python.
class PassByReference:
def Change(self, var):
self.a = var
print(self.a)
s=PassByReference()
s.Change(5)
class Obj:
def __init__(self,a):
self.value = a
def sum(self, a):
self.value += a
a = Obj(1)
b = a
a.sum(1)
print(a.value, b.value)// 2 2
In Python, everything is passed by value, but if you want to modify some state, you can change the value of an integer inside a list or object that's passed to a method.
integers are immutable in python and once they are created we cannot change their value by using assignment operator to a variable we are making it to point to some other address not the previous address.
In python a function can return multiple values we can make use of it:
def swap(a,b):
return b,a
a,b=22,55
a,b=swap(a,b)
print(a,b)
To change the reference a variable is pointing to we can wrap immutable data types(int, long, float, complex, str, bytes, truple, frozenset) inside of mutable data types (bytearray, list, set, dict).
#var is an instance of dictionary type
def change(var,key,new_value):
var[key]=new_value
var =dict()
var['a']=33
change(var,'a',2625)
print(var['a'])

PyCharm: 'Function Doesn't Return Anything'

I just started working with PyCharm Community Edition 2016.3.2 today. Every time I assign a value from my function at_square, it warns me that 'Function at_square doesn't return anything,' but it definitely does in every instance unless an error is raised during execution, and every use of the function is behaving as expected. I want to know why PyCharm thinks it doesn't and if there's anything I can do to correct it. (I know there is an option to suppress the warning for that particular function, but it does so by inserting a commented line in my code above the function, and I find it just as annoying to have to remember to take that out at the end of the project.)
This is the function in question:
def at_square(self, square):
""" Return the value at the given square """
if type(square) == str:
file, rank = Board.tup_from_an(square)
elif type(square) == tuple:
file, rank = square
else:
raise ValueError("Expected tuple or AN str, got " + str(type(square)))
if not 0 <= file <= 7:
raise ValueError("File out of range: " + str(file))
if not 0 <= rank <= 7:
raise ValueError("Rank out of range: " + str(rank))
return self.board[file][rank]
If it matters, this is more precisely a method of an object. I stuck with the term 'function' because that is the language PyCharm is using.
My only thought is that my use of error raising might be confusing PyCharm, but that seems too simple. (Please feel free to critique my error raising, as I'm not sure this is the idiomatic way to do it.)
Update: Humorously, if I remove the return line altogether, the warning goes away and returns immediately when I put it back. It also goes away if I replace self.board[file][rank] with a constant value like 8. Changing file or rank to constant values does not remove the warning, so I gather that PyCharm is somehow confused about the nature of self.board, which is a list of 8 other lists.
Update: Per the suggestion of #StephenRauch, I created a minimal example that reflects everything relevant to data assignment done by at_square:
class Obj:
def __init__(self):
self.nested_list = [[0],[1]]
#staticmethod
def tup_method(data):
return tuple(data)
def method(self,data):
x,y = Obj.tup_method(data)
return self.nested_list[x][y]
def other_method(self,data):
value = self.method(data)
print(value)
x = Obj()
x.other_method([1,2])
PyCharm doesn't give any warnings for this. In at_square, I've tried commenting out every single line down to the two following:
def at_square(self, square):
file, rank = Board.tup_from_an(square)
return self.board[file][rank]
PyCharm gives the same warning. If I leave only the return line, then and only then does the warning disappear. PyCharm appears to be confused by the simultaneous assignment of file and rank via tup_from_an. Here is the code for that method:
#staticmethod
def tup_from_an(an):
""" Convert a square in algebraic notation into a coordinate tuple """
if an[0] in Board.a_file_dict:
file = Board.a_file_dict[an[0]]
else:
raise ValueError("Invalid an syntax (file out of range a-h): " + str(an))
if not an[1].isnumeric():
raise ValueError("Invalid an syntax (rank out of range 1-8): " + str(an))
elif int(an[1]) - 1 in Board.n_file_dict:
rank = int(an[1]) - 1
else:
raise ValueError("Invalid an syntax (rank out of range 1-8): " + str(an))
return file, rank
Update: In its constructor, the class Board (which is the parent class for all these methods) saves a reference to the instance in a static variable instance. self.at_square(square) gives the warning, while Board.instance.at_square(square) does not. I'm still going to use the former where appropriate, but that could shed some light on what PyCharm is thinking.
PyCharm assumes a missing return value if the return value statically evaluates to None. This can happen if initialising values using None, and changing their type later on.
class Foo:
def __init__(self):
self.qux = [None] # infers type for Foo().qux as List[None]
def bar(self):
return self.qux[0] # infers return type as None
At this point, Foo.bar is statically inferred as (self: Foo) -> None. Dynamically changing the type of qux via side-effects does not update this:
foo = Foo()
foo.qux = [2] # *dynamic* type of foo.bar() is now ``(self: Foo) -> int``
foo_bar = foo.bar() # Function 'bar' still has same *static* type
The problem is that you are overwriting a statically inferred class attribute by means of a dynamically assigned instance attribute. That is simply not feasible for static analysis to catch in general.
You can fix this with an explicit type hint.
import typing
class Foo:
def __init__(self):
self.qux = [None] # type: typing.List[int]
def bar(self):
return self.qux[0] # infers return type as int
Since Python 3.5, you can also use inline type hints. These are especially useful for return types.
import typing
class Foo:
def __init__(self):
# initial type hint to enable inference
self.qux: typing.List[int] = [None]
# explicit return type hint to override inference
def bar(self) -> int:
return self.qux[0] # infers return type as int
Note that it is still a good idea to rely on inference where it works! Annotating only self.qux makes it easier to change the type later on. Annotating bar is mostly useful for documentation and to override incorrect inference.
If you need to support pre-3.5, you can also use stub files. Say your class is in foomodule.py, create a file called foomodule.pyi. Inside, just add the annotated fields and function signatures; you can (and should) leave out the bodies.
import typing
class Foo:
# type hint for fields
qux: typing.List[int]
# explicit return type hint to override inference
def bar(self) -> int:
...
Type hinting as of Python 3.6
The style in the example below is now recommended:
from typing import typing
class Board:
def __init__(self):
self.board: List[List[int]] = []
Quick Documentation
Pycharm's 'Quick Documentation' show if you got the typing right. Place the cursor in the middle of the object of interest and hit Ctrl+Q. I suspect the types from tup_from_an(an) is not going to be as desired. You could, try and type hint all the args and internal objects, but it may be better value to type hint just the function return types. Type hinting means I don't need to trawl external documentation, so I focus effort on objects that'll be used by external users and try not to do too much internal stuff. Here's both arg and return type hinting:
#staticmethod
def tup_from_an(an: List[int]) -> (int, int):
...
Clear Cache
Pycharm can lock onto out dated definitions. Doesn't hurt to go help>find action...>clear caches
No bodies perfect
Python is constantly improving (Type hinting was updated in 3.7) Pycharm is also constantly improving. The price for the fast pace of development on these relatively immature advanced features means checking or submitting to their issue tracker may be the next call.

PyQt_PyObject equivalent when using new-style signals/slots?

So I have a need to pass around a numpy array in my PyQt Application. I first tried using the new-style signals/slots, defining my signal with:
newChunkToProcess = pyqtSignal(np.array()), however this gives the error:
TypeError: Required argument 'object' (pos 1) not found
I have worked out how to do this with the old-style signals and slots using
self.emit(SIGNAL("newChunkToProcess(PyQt_PyObject)"), np.array([5,1,2])) - (yes, that's just testing data :), but I was wondering, is it possible to do this using the new-style system?
The type you're looking for is np.ndarray
You can tell this from the following code:
>>> arr = np.array([]) # create an array instance
>>> type(arr) # ask 'what type is this object?'
<type 'numpy.ndarray'>
So your signal should look more like:
newChunkToProcess = pyqtSignal(np.ndarray)
(Notice I'm passing the type np.ndarray, rather than an array instance as you tried).
If you don't want to worry about the type of the argument, you could instead use:
newChunkToProcess = pyqtSignal(object)
This should let you send any data type at all through the signal.
Also: numpy and Qt do not share any major functionality that I know of. In fact, the two are quite complementary and make a very powerful combination.
You are doing it wrong. You have to pass the data object type: int, str, ... in your case list
Like I am doing:
images = pyqtSignal(int, str);
failed = pyqtSignal(str, str);
finished = pyqtSignal(int)

Resources