Problem with pytorch hooks? Activation maps allways positiv - python-3.x
I was looking at the activation maps of vgg19 in pytorch.
I found that all the values of the maps are positive even before I applied the ReLU.
This seems very strange to me... If this would be correct (could be that I not used the register_forward_hook method correctly?) why would one then apply ReLu at all?
This is my code to produce this:
import torch
import torchvision
import torchvision.models as models
import torchvision.transforms as transforms
from torchsummary import summary
import os, glob
import matplotlib.pyplot as plt
import numpy as np
# settings:
batch_size = 4
# load the model
model = models.vgg19(pretrained=True)
summary(model.cuda(), (3, 32, 32))
model.cpu()
# how to preprocess??? See here:
# https://discuss.pytorch.org/t/how-to-preprocess-input-for-pre-trained-networks/683/2
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
transform = transforms.Compose(
[transforms.ToTensor(),
normalize])
# build data loader
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size,
shuffle=True, num_workers=2)
# show one image
dataiter = iter(trainloader)
images, labels = dataiter.next()
# set a hook
activation = {}
def get_activation(name):
def hook(model, input, output):
activation[name] = output.detach()
return hook
# hook at the first conv layer
hook = model.features[0].register_forward_hook(get_activation("firstConv"))
model(images)
hook.remove()
# show results:
flatted_feat_maps = activation["firstConv"].detach().numpy().flatten()
print("All positiv??? --> ",np.all(flatted_feat_maps >= 0))
plt.hist(flatted_feat_maps)
plt.show()
----------------------------------------------------------------
Layer (type) Output Shape Param #
================================================================
Conv2d-1 [-1, 64, 32, 32] 1,792
ReLU-2 [-1, 64, 32, 32] 0
Conv2d-3 [-1, 64, 32, 32] 36,928
ReLU-4 [-1, 64, 32, 32] 0
MaxPool2d-5 [-1, 64, 16, 16] 0
Conv2d-6 [-1, 128, 16, 16] 73,856
ReLU-7 [-1, 128, 16, 16] 0
Conv2d-8 [-1, 128, 16, 16] 147,584
ReLU-9 [-1, 128, 16, 16] 0
MaxPool2d-10 [-1, 128, 8, 8] 0
Conv2d-11 [-1, 256, 8, 8] 295,168
ReLU-12 [-1, 256, 8, 8] 0
Conv2d-13 [-1, 256, 8, 8] 590,080
ReLU-14 [-1, 256, 8, 8] 0
Conv2d-15 [-1, 256, 8, 8] 590,080
ReLU-16 [-1, 256, 8, 8] 0
Conv2d-17 [-1, 256, 8, 8] 590,080
ReLU-18 [-1, 256, 8, 8] 0
MaxPool2d-19 [-1, 256, 4, 4] 0
Conv2d-20 [-1, 512, 4, 4] 1,180,160
ReLU-21 [-1, 512, 4, 4] 0
Conv2d-22 [-1, 512, 4, 4] 2,359,808
ReLU-23 [-1, 512, 4, 4] 0
Conv2d-24 [-1, 512, 4, 4] 2,359,808
ReLU-25 [-1, 512, 4, 4] 0
Conv2d-26 [-1, 512, 4, 4] 2,359,808
ReLU-27 [-1, 512, 4, 4] 0
MaxPool2d-28 [-1, 512, 2, 2] 0
Conv2d-29 [-1, 512, 2, 2] 2,359,808
ReLU-30 [-1, 512, 2, 2] 0
Conv2d-31 [-1, 512, 2, 2] 2,359,808
ReLU-32 [-1, 512, 2, 2] 0
Conv2d-33 [-1, 512, 2, 2] 2,359,808
ReLU-34 [-1, 512, 2, 2] 0
Conv2d-35 [-1, 512, 2, 2] 2,359,808
ReLU-36 [-1, 512, 2, 2] 0
MaxPool2d-37 [-1, 512, 1, 1] 0
AdaptiveAvgPool2d-38 [-1, 512, 7, 7] 0
Linear-39 [-1, 4096] 102,764,544
ReLU-40 [-1, 4096] 0
Dropout-41 [-1, 4096] 0
Linear-42 [-1, 4096] 16,781,312
ReLU-43 [-1, 4096] 0
Dropout-44 [-1, 4096] 0
Linear-45 [-1, 1000] 4,097,000
================================================================
Total params: 143,667,240
Trainable params: 143,667,240
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.01
Forward/backward pass size (MB): 5.25
Params size (MB): 548.05
Estimated Total Size (MB): 553.31
----------------------------------------------------------------
Could it be that I somehow did not use the register_forward_hook correctly?
You should clone the output in
def get_activation(name):
def hook(model, input, output):
activation[name] = output.detach().clone() #
return hook
Note that Tensor.detach only detaches the tensor from the graph, but both tensors will still share the same underlying storage.
Returned Tensor shares the same storage with the original one. In-place modifications on either of them will be seen, and may trigger errors in correctness checks. IMPORTANT NOTE: Previously, in-place size / stride / storage changes (such as resize_ / resize_as_ / set_ / transpose_) to the returned tensor also update the original tensor. Now, these in-place changes will not update the original tensor anymore, and will instead trigger an error. For sparse tensors: In-place indices / values changes (such as zero_ / copy_ / add_) to the returned tensor will not update the original tensor anymore, and will instead trigger an error.
Related
Fastest, best (fastest) way to modify data in in a pytorch loss function?
I want to experiment with creating a modified Loss function for 4 channel image data. What is the best way to split torch.Size([64, 4, 128, 128]) to torch.Size([64, 3, 128, 128]) torch.Size([64, 1, 128, 128])
You can either slice the second axis and extract two tensors: >>> a, b = x[:, :3], x[:, 3:] >>> a.shape, b.shape (64, 3, 128, 128), (64, 1, 128, 128) Alternatively you can apply torch.split on the first dimension: >>> a, b = x.split(3, dim=1) >>> a.shape, b.shape (64, 3, 128, 128), (64, 1, 128, 128)
I was able to resolve this myself by using the Split function. Given an Image based Tensor like: torch.Size([64, 4, 128, 128]) You can split on dim 1 and given a static length. self.E1 = torch.split(self.E, 3, 1) print(self.E1[0].shape); print(self.E1[1].shape); Gives: torch.Size([64, 4, 128, 128]) torch.Size([64, 3, 128, 128]) torch.Size([64, 1, 128, 128])
How to get the information like the output of Model.get_config() in keras?
I want to get some information like this. The input layer of one layer and the output layer of one layer.
You can try with summary, here is an example from torchsummary import summary vgg = models.vgg16() summary(vgg, (3, 224, 224)) ---------------------------------------------------------------- Layer (type) Output Shpae Param # ================================================================ Conv2d-1 [-1, 64, 224, 224] 1792 ReLU-2 [-1, 64, 224, 224] 0 Conv2d-3 [-1, 64, 224, 224] 36928 ReLU-4 [-1, 64, 224, 224] 0 MaxPool2d-5 [-1, 64, 112, 112] 0 Conv2d-6 [-1, 128, 112, 112] 73856 ReLU-7 [-1, 128, 112, 112] 0 Conv2d-8 [-1, 128, 112, 112] 147584 ReLU-9 [-1, 128, 112, 112] 0 MaxPool2d-10 [-1, 128, 56, 56] 0 Conv2d-11 [-1, 256, 56, 56] 295168 ReLU-12 [-1, 256, 56, 56] 0 Conv2d-13 [-1, 256, 56, 56] 590080 ReLU-14 [-1, 256, 56, 56] 0 Conv2d-15 [-1, 256, 56, 56] 590080 ReLU-16 [-1, 256, 56, 56] 0 MaxPool2d-17 [-1, 256, 28, 28] 0 Conv2d-18 [-1, 512, 28, 28] 1180160 ReLU-19 [-1, 512, 28, 28] 0 Conv2d-20 [-1, 512, 28, 28] 2359808 ReLU-21 [-1, 512, 28, 28] 0 Conv2d-22 [-1, 512, 28, 28] 2359808 ReLU-23 [-1, 512, 28, 28] 0 MaxPool2d-24 [-1, 512, 14, 14] 0 Conv2d-25 [-1, 512, 14, 14] 2359808 ReLU-26 [-1, 512, 14, 14] 0 Conv2d-27 [-1, 512, 14, 14] 2359808 ReLU-28 [-1, 512, 14, 14] 0 Conv2d-29 [-1, 512, 14, 14] 2359808 ReLU-30 [-1, 512, 14, 14] 0 MaxPool2d-31 [-1, 512, 7, 7] 0 Linear-32 [-1, 4096] 102764544 ReLU-33 [-1, 4096] 0 Dropout-34 [-1, 4096] 0 Linear-35 [-1, 4096] 16781312 ReLU-36 [-1, 4096] 0 Dropout-37 [-1, 4096] 0 Linear-38 [-1, 1000] 4097000 ================================================================ Total params: 138357544 Trainable params: 138357544 Non-trainable params: 0 ----------------------------------------------------------------
Resize torch tensor channels
I have a torch tensor with 3 channels, and I want it to be 1 channel (all other dimensions should stay the same). So if my current dimensions are torch.Size([6, 3, 512, 512]) I want it to be torch.Size([6, 1, 512, 512]) How can I do that?
Does this solve your problem? a = torch.ones(6, 3, 512, 512) b = a[:, 0:1, :, :] print(b.size()) # torch.Size([6, 1, 512, 512])
Pytorch: why the orders of weights in ConvTranspose2d and Conv2d are different?
Pytorch code: up = nn.ConvTranspose2d(3, 128, 2, stride=2) conv = nn.Conv2d(3, 128, 2) inputs = Variable(torch.rand(1, 3, 64, 64)) print('up conv output size:', up(inputs).size()) inputs = Variable(torch.rand(1, 3, 64, 64)) print('conv output size:', conv(inputs).size()) print('up conv weight size:', up.weight.data.shape) print('conv weight size:', conv.weight.data.shape) Result: up conv output size: torch.Size([1, 128, 128, 128]) conv output size: torch.Size([1, 128, 63, 63]) up conv weight size: torch.Size([3, 128, 2, 2]) conv weight size: torch.Size([128, 3, 2, 2]) Why the orders are different between ConvTranspose2d (3,128) and Conv2d (128, 3)? Is it supposed to behave like this?
TensorFlow: Why does avg_pool ignore one stride dimension?
I am attempting to stride over the channel dimension, and the following code exhibits surprising behaviour. It is my expectation that tf.nn.max_pool and tf.nn.avg_pool should produce tensors of identical shape when fed the exact same arguments. This is not the case. import tensorflow as tf x = tf.get_variable('x', shape=(100, 32, 32, 64), initializer=tf.constant_initializer(5), dtype=tf.float32) ksize = (1, 2, 2, 2) strides = (1, 2, 2, 2) max_pool = tf.nn.max_pool(x, ksize, strides, padding='SAME') avg_pool = tf.nn.avg_pool(x, ksize, strides, padding='SAME') print(max_pool.shape) print(avg_pool.shape) This prints $ python ex04/mini.py (100, 16, 16, 32) (100, 16, 16, 64) Clearly, I am misunderstanding something.
The link https://github.com/Hvass-Labs/TensorFlow-Tutorials/issues/19 states: The first and last stride must always be 1, because the first is for the image-number and the last is for the input-channel.
Turns out this is really a bug. https://github.com/tensorflow/tensorflow/issues/14886#issuecomment-352934112