Prevent repeat printing of common list variables Haskell - haskell

Currently, I am making a function that can take the values in two lists, compare them, and print any similar values. If a value is duplicated in both lists, it is not printed a second time.
EXAMPLE
INPUT: commons [1,2,2,3,4] [2,3,4,5,2,6,8]
EXPECTED OUTPUT: [2,3,4]
What I currently have causes a repeated values in both lists to repeat in the output. So, in the above example, the 2 would print twice.
Here is the current code I am working on:
commons :: Eq a => [a] -> [a] -> [a]
commons [] [] = []
commons x y = commons_Helper x y
commons_Helper :: Eq a => [a] -> [a] -> [a]
commons_Helper [] [] = []
commons_Helper x [] = []
commons_Helper [] y = []
commons_Helper (x:xs) y =
if elem x y then x : commons_Helper xs y
else commons_Helper xs y
Any and all help would be greatly appreciated.
EDIT: This must remain as commons :: Eq a => [a] -> [a] -> [a], and I cannot import and libraries

You could make your traversal of the xs list a stateful one, the state keeping track of elements that have been already seen. The state begins life as an empty list.
It is possible to do that by adding a 3rd parameter to your helper function, which currently is not very useful.
commons_Helper :: Eq a => [a] -> [a] -> [a] -> [a]
commons_Helper [] ys st = []
commons_Helper (x:xs) ys st =
if (elem x ys && (not $ elem x st)) -- extra test here
then x : (commons_Helper xs ys (x:st))
else commons_Helper xs ys st
commons :: Eq a => [a] -> [a] -> [a]
commons xs ys = commons_Helper xs ys []
This state-based technique is very common in Haskell. There is even a library function: mapAccumL :: (s -> a -> (s, b)) -> s -> [a] -> (s, [b]) to support it.

Related

Get duplicated elements in a list without using (Ord a)

I have been trying to make a function that concatenates a list of lists, sorts it, and gives back the duplicated values.
The issue I'm facing is that it tells me to change (Eq a) to (Ord a) for the last function, but I cannot do this. How can I solve this without changing (Eq a) to (Ord a) ?
This is the code I have:
group :: Eq a => [a] -> [[a]]
group = groupBy (==)
groupBy :: (a -> a -> Bool) -> [a] -> [[a]]
groupBy _ [] = []
groupBy eq (x:xs) = (x:ys) : groupBy eq zs
where (ys,zs) = span (eq x) xs
uniq :: Eq b => [b] -> [b]
uniq = map head . group
insert :: Ord a => a -> [a] -> [a]
insert x [] = [x]
insert x (y:ys) | x < y = x:y:ys
| otherwise = y:(insert x ys)
isort :: (Eq a, Ord a) => [a] -> [a]
isort [] = []
isort (x:xs) = insert x (isort xs)
kms :: Ord a => [a]
kms xss = uniq (isort (concat xss))
pairwiseIntersections :: (Eq a) => [[a]] -> [a]
pairwiseIntersections xss = kms xss
You cannot sort a list without its elements having some ordering -- meaning that they must be instances of Ord.
You can do other things to deduplicate a list, like nub, but if you want it sorted you need Ord or an equivalent ordering.
You mention no complexity requirements, so the simplest approach could be
keepOnlyDups [] = []
keepOnlyDups (x:xs) = [x | elem x xs] ++ keepOnlyDups [ y | y <- xs, y /= x]
removeExtras [] = []
removeExtras (x:xs) = [x] ++ removeExtras [ y | y <- xs, y /= x]
answering both your question's text and the implied meaning of the code.
Implementing keepOnlyUniques is left as an exercise, if you're interested in that.

Greaters function define

I would like to define a greaters function, which selects from a list items that are larger than the one before it.
For instance:
greaters [1,3,2,4,3,4,5] == [3,4,4,5]
greaters [5,10,6,11,7,12] == [10,11,12]
The definition I came up with is this :
greaters :: Ord a => [a] -> [a]
Things I tried so far:
greaters (x:xs) = group [ d | d <- xs, x < xs ]
Any tips?
We can derive a foldr-based solution by a series of re-writes starting from the hand-rolled recursive solution in the accepted answer:
greaters :: Ord a => [a] -> [a]
greaters [] = []
greaters (x:xs) = go x xs -- let's re-write this clause
where
go _ [] = []
go last (act:xs)
| last < act = act : go act xs
| otherwise = go act xs
greaters (x:xs) = go xs x -- swap the arguments
where
go [] _ = []
go (act:xs) last
| last < act = act : go xs act
| otherwise = go xs act
greaters (x:xs) = foldr g z xs x -- go ==> foldr g z
where
foldr g z [] _ = []
foldr g z (act:xs) last
| last < act = act : foldr g z xs act
| otherwise = foldr g z xs act
greaters (x:xs) = foldr g z xs x
where -- simplify according to
z _ = [] -- foldr's definition
g act (foldr g z xs) last
| last < act = act : foldr g z xs act
| otherwise = foldr g z xs act
Thus, with one last re-write of foldr g z xs ==> r,
greaters (x:xs) = foldr g z xs x
where
z = const []
g act r last
| last < act = act : r act
| otherwise = r act
The extra parameter serves as a state being passed forward as we go along the input list, the state being the previous element; thus avoiding the construction by zip of the shifted-pairs list serving the same purpose.
I would start from here:
greaters :: Ord a => [a] -> [a]
greaters [] = []
greaters (x:xs) = greatersImpl x xs
where
greatersImpl last [] = <fill this out>
greatersImpl last (x:xs) = <fill this out>
The following functions are everything you’d need for one possible solution :)
zip :: [a] -> [b] -> [(a, b)]
drop 1 :: [a] -> [a]
filter :: (a -> Bool) -> [a] -> [a]
(<) :: Ord a => a -> a -> Bool
uncurry :: (a -> b -> c) -> (a, b) -> c
map :: (a -> b) -> [a] -> [b]
snd :: (a, b) -> b
Note: drop 1 can be used when you’d prefer a “safe” version of tail.
If you like over-generalization like me, you can use the witherable package.
{-# language ScopedTypeVariables #-}
import Control.Monad.State.Lazy
import Data.Witherable
{-
class (Traversable t, Filterable t) => Witherable t where
-- `wither` is an effectful version of mapMaybe.
wither :: Applicative f => (a -> f (Maybe b)) -> t a -> f (t b)
-}
greaters
:: forall t a. (Ord a, Witherable t)
=> t a -> t a
greaters xs = evalState (wither go xs) Nothing
where
go :: a -> State (Maybe a) (Maybe a)
go curr = do
st <- get
put (Just curr)
pure $ case st of
Nothing -> Nothing
Just prev ->
if curr > prev
then Just curr
else Nothing
The state is the previous element, if there is one. Everything is about as lazy as it can be. In particular:
If the container is a Haskell list, then it can be an infinite one and everything will still work. The beginning of the list can be produced without withering the rest.
If the container extends infinitely to the left (e.g., an infinite snoc list), then everything will still work. How can that be? We only need to know what was in the previous element to work out the state for the current element.
"Roll your own recursive function" is certainly an option here, but it can also be accomplished with a fold. filter can't do it because we need some sort of state being passed, but fold can nicely accumulate the result while keeping that state at the same time.
Of course the key idea is that we keep track of last element add the next one to the result set if it's greater than the last one.
greaters :: [Int] -> [Int]
greaters [] = []
greaters (h:t) = reverse . snd $ foldl (\(a, r) x -> (x, if x > a then x:r else r)) (h, []) t
I'd really love to eta-reduce it but since we're dropping the first element and seeding the accumulator with it it kinda becomes awkward with the empty list; still, this is effectively an one-liner.
So i have come up with a foldr solution. It should be similar to what #Will Ness has demonstrated but not quite i suppose as we don't need a separate empty list check in this one.
The thing is, while folding we need to encapsulate the previous element and also the state (the result) in a function type. So in the go helper function f is the state (the result) c is the current element of interest and p is the previous one (next since we are folding right). While folding from right to left we are nesting up these functions only to run it by applyying the head of the input list to it.
go :: Ord a => a -> (a -> [a]) -> (a -> [a])
go c f = \p -> let r = f c
in if c > p then c:r else r
greaters :: Ord a => [a] -> [a]
greaters = foldr go (const []) <*> head
*Main> greaters [1,3,2,4,3,4,5]
[3,4,4,5]
*Main> greaters [5,10,6,11,7,12]
[10,11,12]
*Main> greaters [651,151,1651,21,651,1231,4,1,16,135,87]
[1651,651,1231,16,135]
*Main> greaters [1]
[]
*Main> greaters []
[]
As per rightful comments of #Will Ness here is a modified slightly more general code which hopefully doesn't break suddenly when the comparison changes. Note that const [] :: b -> [a] is the initial function and [] is the terminator applied to the result of foldr. We don't need Maybe since [] can easily do the job of Nothing here.
gs :: Ord a => [a] -> [a]
gs xs = foldr go (const []) xs $ []
where
go :: Ord a => a -> ([a] -> [a]) -> ([a] -> [a])
go c f = \ps -> let r = f [c]
in case ps of
[] -> r
[p] -> if c > p then c:r else r

Sorting a list of lists in Haskell

I want to write a function that takes a list of sorted lists, then merges everything together and sorts them again.
I managed to write this so far:
merge_:: Ord a => [[a]] -> [a] --takes in the list and merges it
merge_ [] = []
merge_ (x:xs) = x ++ merge_ xs
isort:: Ord a => [a] -> [a] --Sorts a list
isort [] = []
isort (a:x) = ins a (isort x)
where
ins a [] = [a]
ins a (b:y) | a<= b = a:(b:y)
| otherwise = b: (ins a y)
I haven't been able to find a way to combine these two in one function in a way that makes sense. Note that I'm not allowed to use things such as ('.', '$'..etc) (homework)
We start simple. How do we merge two sorted lists?
mergeTwo :: Ord a => [a] -> [a] -> [a]
mergeTwo [] ys = ys
mergeTwo xs [] = xs
mergeTwo (x:xs) (y:ys)
| x <= y = x : mergeTwo xs (y:ys)
| otherwise = y : mergeTwo (x:xs) ys
How do we merge multiple? Well, we start with the first and the second and merge them together. Then we merge the new one and the third together:
mergeAll :: Ord a => [[a]] -> [a]
mergeAll (x:y:xs) = mergeAll ((mergeTwo x y) : xs)
mergeAll [x] = x
mergeAll _ = []
Allright. Now, to sort all elements, we need to create a list from every element, and then merge them back. Let's write a function that creates a list for a single item:
toList :: a -> [a]
toList x = -- exercise
And now a function to wrap all elements in lists:
allToList :: [a] -> [[a]]
allToList = -- exercise
And now we're done. We simply need to use allToList and then mergeAll:
isort :: Ord a => [a] -> [a]
isort xs = mergeAll (allToList xs)
Note that this exercise got a lot easier since we've split it into four functions.
Exercises (which might not be possible for you(r homework))
Write toList and allToList.
Try a list comprehension for allToList. Try a higher order function for allToList.
Write isort point-free (with (.)).
Check whether there is already a toList function with the same type. Use that one.
Rewrite mergeAll using foldr
Try this (not tested):
merge :: Ord a => [a] -> [a] -> [a]
merge [] l1 = l1
merge l1 [] = l1
merge (e1:l1) (e2:l2)
| e1<e2 = e1:merge l1 (e2:l2)
| otherwise = e2:merge (e1:l1) l2

Haskell multifilter

I want to filter a list by predicates curried from another list.
For instance:
multifilter :: (a -> a -> Bool) -> [a] -> [a] -> [a]
multifilter _ _ [] = []
multifilter _ [] _ = []
multifilter f (x:xs) ys = (filter (f x) ys) ++ (multifilter f xs ys)
With usage such as:
prelude> multifilter (==) [1,2,3] [5,3,2]
[2,3]
Is there a standard way to do this?
You can use intersectBy:
λ> :t intersectBy
intersectBy :: (a -> a -> Bool) -> [a] -> [a] -> [a]
λ> intersectBy (==) [1,2,3] [5,3,2]
[2,3]
You can use hoogle to search functions using type signature and finding them.
Note: This answer implements the specification expressed by the words and example in the question, rather than the different one given by the implementation of multifilter there. For the latter possibility, see gallais' answer.
Sibi's answer shows how you should actually do it. In any case, it is instructive to consider how you might write your function using filter. To begin with, we can establish two facts about it:
multifilter can be expressed directly as filter pred for some appropriate choice of pred. Given a fixed "predicate list", whether an element of the list you are multifiltering will be in the result only depends on the value of that element.
In multifilter f xs ys, the list you are filtering is xs, and the "predicate list" is ys. Were it not so, you would get [3,2] rather than [2,3] in your (quite well-chosen) example.
So we have:
multifilter :: (a -> a -> Bool) -> [a] -> [a] -> [a]
multifilter f xs ys = filter pred xs
where
pred = undefined -- TODO
All we need to do is implementing pred. Given an element x, pred should produce True if, for some element y of ys, f x y is true. We can conveniently express that using any:
pred x = any (\y -> f x y) ys
-- Or, with less line noise:
pred x = any (f x) ys
Therefore, multifilter becomes...
multifilter :: (a -> a -> Bool) -> [a] -> [a] -> [a]
multifilter f xs ys = filter pred xs
where
pred x = any (f x) ys
-- Or, more compactly:
multifilter :: (a -> a -> Bool) -> [a] -> [a] -> [a]
multifilter f xs ys = filter (\x -> any (f x) ys) xs
... which is essentially equivalent to intersectBy, as you can see by looking at intersectBy's implementation.
A third option is to use a list comprehension:
multifilter rel xs ys = [ x | x <- xs, y <- ys, x `rel` y ]
or, if you want partial application:
multifilter p xs ys = [ x | x <- xs, let f = p x, y <- ys, f y ]
If you want to use filter,
relate rel xs ys = filter (uncurry rel) $ liftM2 (,) xs ys
(and throw in map fst)
The answer you have accepted provides a function distinct from the one defined in your post: it retains elements from xs when yours retains elements from ys. You can spot this mistake by using a more general type for multifilter:
multifilter :: (a -> b -> Bool) -> [a] -> [b] -> [b]
Now, this can be implemented following the specification described in your post like so:
multifilter p xs ys = fmap snd
$ filter (uncurry p)
$ concatMap (\ x -> fmap (x,) ys) xs
If you don't mind retaining the values in the order they are in in ys then you can have an even simpler definition:
multifilter' :: (a -> b -> Bool) -> [a] -> [b] -> [b]
multifilter' p xs = filter (flip any xs . flip p)
Simply use Hoogle to find it out via the signature (a -> a -> Bool) -> [a] -> [a] -> [a]
https://www.haskell.org/hoogle/?hoogle=%28a+-%3E+a+-%3E+Bool%29+-%3E+%5Ba%5D+-%3E+%5Ba%5D+-%3E+%5Ba%5D
yields intersectBy:
intersectBy :: (a -> a -> Bool) -> [a] -> [a] -> [a]

Haskell "Couldn't match expected type ‘a’ with actual type ‘[a0]’"

Im doing a project in Haskell where I am trying to create a function which takes two list inputs and then returns a union of the list but without any duplicates.
The problem is that I keep getting the error message:
Couldn't match expected type ‘a’ with actual type ‘[t0]’
‘a’ is a rigid type variable bound by
the type signature for newList :: [a] -> [a] -> [a]
Here is my code:
allList :: (Eq a) => [a] -> [a] -> [a]
allList [] [] = []
allList x y = (x ++ y)
checkDup [] = []
checkDup (z:zs)
| z `elem` zs = checkDup zs
| otherwise = z : checkDup zs
newList :: (Eq a) => [a] -> [a] -> [a]
newList [] [] = []
newList x y = [checkDup z | z <- allList x y]
The first allList function creates a list of the two list, the checkDup creates a new list without any duplicates and the newList uses list comprehension to pass the combined list to the checkDup.
Anyone know where I am going wrong?
The problem lies here:
newList x y = [checkDup z | z <- allList x y]
z is supposed to be a list you pass to checkDup, but in this case, z is just a single element
Maybe you want:
newList x y = checkDup $ allList x y
newList can be declared as follows:
newList :: (Eq a) => [a] -> [a] -> [a]
newList = checkDup . allList
Since #Smac89 answered your question, why not use a data representation like Data.Set?
import qualified Data.Set as S
allList :: Ord a => [a] -> [a] -> [a]
allList xs ys = S.toList $ S.union (S.fromList xs) (S.fromList ys)
(although the continued use of Sets is probably even more meaningful.)
Or by using Data.List:
import Data.List
newList :: Eq a => [a] -> [a] -> [a]
newList xs ys = nub $ xs ++ ys

Resources