How to install valgrind on linux - linux

enter image description here
I have basically tried every tutorial out there and still cant run valgrind.
So far....
I installed valgrind from their website to directory 'memcheck'
tar xvf valgrind-3.18.1.tar.bz2
the picture is the outcome of "./configure" ,I cant tell if it was successful or not.
then the command "make" gives: make: *** No targets specified and no makefile found. Stop.
and the same for "make install"
this is what i tried to do. How to install valgrind properly?

If the output from configure contains "configure: error:" then it failed.
Installing with your package manager will be easiest.
Otherwise, you will need
A C compiler (e.g., gcc or clang), always.
GNU make, always.
Perl, probably always.
Sed and awk, always.
Autotools, m4, if regenerating the configure script.
Lots of packages if you want to generate the docs.
A C++ compiler (g++ or clang++) if you want to build and run the regression tests.

Related

arm-none-eabi-objdump: error while loading shared libraries: libdebuginfod.so.1: cannot open shared object file

If you have an answer for this, or further information, I'd welcome it. I'm following advice from here, to offer some unsolicited help by posting this question then an answer I've already found for it.
I have a bare-metal ARM board for which I'm building a cross-toolchain, from sources for GNU binutils, gcc and gdb, and for SourceWare's Newlib. I got those four working and cross-built a DoNothing.c into an ELF file - but I couldn't disassemble it with this:
$ arm-none-eabi-objdump -S DoNothing.elf
The error was:
$ arm-none-eabi-objdump: error while loading shared libraries: libdebuginfod.so.1: cannot open shared object file: No such file or directory
I'll follow up with a solution.
The error was correct - my system didn't have libdebuginfod.so.1 installed - but I have another cross-binutils, installed from binary for a different target, and its objdump -S works fine on the same host. Why would one build of objdump complain about missing that shared library, when clearly not all builds of objdump need it?
First I tried rebuilding cross binutils, specifying --without-debuginfod as a configure option. No change, which seems odd: surely that should build tools that not only don't use debuginfod but which don't depend on it in any way. (If someone can answer that, or point out what I've misunderstood, it may help people.)
Next I figured debuginfod was inescapable (for my cross-tools built from source at least), so I'd install it to get rid of the error. It's a component of the elfutils package, but installing the latest elfutils available for my Ubuntu 20.04 system didn't bring libdebuginfod.so.1 with it.
I found a later one, for Arch Linux, whose package contents suggested it would - but its package format doesn't match Ubuntu's and installing it was going to involve a lot of work. Instead I opted to build it from the Arch Linux source package. However, running ./configure on that gave a couple of infuriatingly similar errors:
configure: checking libdebuginfod dependencies, --disable-libdebuginfod or --enable-libdebuginfo=dummy to skip
...
configure: error: dependencies not found, use --disable-libdebuginfod to disable or --enable-libdebuginfod=dummy to build a (bootstrap) dummy library.
No combination of those suggestions would allow configure for elfutils-0.182 to run to completion.
The problem of course was my own lack of understanding. The solution came from the Linux From Scratch project: what worked was to issue configure with both of the suggested options, like this:
$ ./configure --prefix=/usr \
--disable-debuginfod \
--enable-libdebuginfod=dummy \
--libdir=/lib
That gave a clean configure; make worked first time, as did make check and then sudo make install which of course installed libdebuginfod.so.1 as required. I then had an arm-none-eabi-objdump which disassembles cross-compiled ELF files without complaining.

What does make install do when compiling GCC from source code?

I am trying to compile GCC from source. After make finishes, I could not find the GCC binary executable. Here is the configure command I used:
../gcc-svn/configure --prefix=/home/user/Documents/mygcc
Here are my questions specifically:
What should I expect make install does?
Is make install going to do more compilation or just moves some files to ~/Documents/mygcc? If it is the latter where the GCC executable resides?
Any other directory in my system also get affected by make install?
Thank you in advance.

Undefined reference under WinMain#16 in cygwin

i am new to stackflow and i previously i have no background in computer system and programming. However, now i need to run analysis under cygwin for my bioinformatics project. I encounter some error when i try to compile a file name 'zone_b.linux'using cygwin, to produce an executable program. The linux file is download from web https://github.com/haddocking/HADDOCK-binding-sites-tutorial/blob/master/ana_scripts/zone_b.linux. When i try to compile using the following command under cygwin it produce the following error:
$ gcc zone_b.linux
/usr/lib/gcc/i686-pc-cygwin/6.4.0/../../../libcygwin.a(libcmain.o): In
function `main':
/usr/src/debug/cygwin-2.9.0-3/winsup/cygwin/lib/libcmain.c:37: undefined
reference to `WinMain#16'
collect2: error: ld returned 1 exit status
Error description
I search the following error under stackoverflow, and i found two post with similar problem.
First is the post from undefined reference to `WinMain#16'. It stated that the problem is due the Microsoft'linker uses a runtime library entry point(winMainCRTStartup) that calls Microsoft's non-standard WinMain instead of standard main. So, i try the post's suggestion of including the entry by following command
$ gcc zone_b.linux /entry:winMainCRTStartup
gcc: error: /entry:winMainCRTStartup: No such file or directory
However i get the error no such file or directory. I think maybe it is because i am running under cygwin not mingW.
Second post is the Undefined reference to WinMain in Cygwin. From the post, it said use -c compile flag to only produce object file. However, for my case, i am not using any -c. Therefore, i think it is not relevant to my issue.
I would appreciate if anyone could kindly explain to me since i am new to this computing area. Thank you.
zone_b.linux is the compiled and linked executable program to run on a linux machine. It is a 32-bit ELF binary file. It will not work on a Windows machine, even using cygwin or mingw32, without re-compulation.
You probably have to compile zone_b.f, a FORTRAN source file, using the gfortran compiler to create a zone_b.exe that is usable in cygwin. I saw no instructions for this, but try something like gcc zone_b.f and cross fingers. Be sure gfortran is installed using cygwin setup.
You will also need to (re-)build the other executables (cluster_struc and contact) by performing make in the ana_scripts directory. Any supplied executables (from the git clone ... or a downloaded .zip file) will not work under cygwin.
You will need to have perl and python installed. I think perl is installed by default. You can install python2 using cygwin setup. The python script looked like it will work with python2 or python3, whichever is the default. On cygwin, today, python2 is the default python. I don't do perl, so cross your fingers.

Sys_error using ocamlmklib on an object file

I am compiling a theorem prover on cygwin and I get this error:
$ make
ocamlmklib -o bin/minisatinterface minisat/core/Solver.o minisat/simp/SimpSolver
.o bin/Ointerface.o -lstdc++
** Fatal error: Error while reading minisat/core/Solver.o: Sys_error("Invalid ar
gument")
Makefile:49: recipe for target `bin/libminisatinterface.a' failed
make: *** [bin/libminisatinterface.a] Error 2
It is not clear what kind of invalid argument is here?
The only documentation I have found for ocamlmklib did not help on understanding the error message. Could it not read the file itself or there is a problem with the contents? ls does list the file:
$ ls -l minisat/core/Solver.o
-rw-r--r-- 1 gbuday mkpasswd 2096 jan. 22 10.42 minisat/core/Solver.o
update: if I remove Solver.o I get a different error message:
** Fatal error: Cannot find file "minisat/core/Solver.o"
So the above error message is about the contents of the object file.
I happen to know that this specifically has to do with the build of the ATP Satallax, which can be used with Isabelle Sledgehammer, and I was asked to look at this.
I have no expertise with make files and ocaml. My success at building Satallax v2.7 came purely from following the instruction in INSTALL, with some minimal ability at guessing at what error codes meant, which I mainly needed when building Satallax v2.6 over a year ago.
The first important thing to do is make sure that the tar file is unzipped while working in a Cygwin terminal, rather than under Windows with something like WinZip.
Assuming that you're working in a Cygwin terminal, these are the notes which I made. After that I'll include text from the Satallax INSTALL, and few comments.
Sources: http://www.ps.uni-saarland.de/~cebrown/satallax/
0) tar xvzf satallax-2.7.tar.gz
1) Cygwin Package (these are also for other's like Leo-II):
zlib-devel, make, OCaml devel, gcc devel, g++ devel, libstdc++6-devel
Ubuntu 12 Packages:
sudo apt-get install build-essential
zlibg-dev using the Ubuntu Software Center
ocaml and g++ if they don't come with "build-essential"
2) Put eprover.exe in the path so that ./configure can find it.
a) There are the following lines in the configure files, which shows
that it's configured to find picomus, eprover has to be in the path
or `which eprover` has to be edited.
# Optionally set picomus to your picomus executable
picomus=${PWD}/picosat-936/picomus
# Optionally set eprover to your E theorem prover executable
eprover=`which eprover`
3) Follow the instructions in INSTALL.
a) export MROOT=`pwd` takes care of this next note, which I had to do
for v2.6, info I keep in here in case I need it in the future.
b) export MROOT=<minisat-dir>, where you replace "minisat-dir" with the
/cygdrive/e\E_2\binp\isaprove\satallax-2.6\cygwin\minisat
3) OLD v2.6 NOTE: If you get an error, delete the old source and try
untaring the sources again.
My build of v2.7 went through without problems, other than the test giving errors.
With Satallax v2.7, there is now the requirement that the build find the eprover. Note STEP 3 of INSTALL tells you to modify configure, or put eprover.exe in the path before the build. I put it in the path, which for me is
E:\E_2\dev\Isabelle2013-2\contrib\e-1.8\x86-cygwin
The INSTALL file then gives short instructions:
* Short Instructions
cd minisat
export MROOT=`pwd`
cd core
make Solver.o
cd ../simp
make SimpSolver.o
cd ../../picosat-936
./configure
make
cd ..
./configure
make
./test | grep ERROR
After downloading all needed packages, and putting eprover.exe in the path, it built without errors for me other than the test, but the executable works when used by Isabelle Sledgehammer.
STEP 3 of INSTALL talks about providing the location of the picomus executable, but I'm pretty sure that there's not need to do that because picosat-936\picomus.exe gets built in this build.
If you watch the build messages, it'll tell you what it's looking for and what it finds.
For completeness, I include the text from INSTALL, except for the instructions related to what's pertinent for Coq.
There are a number of requirements in order to compile Satallax.
In short, you need make, ocaml, g++ and the zlib header files.
In Debian and derived Linux systems, you can get these from
the build-essential and zlib1g-dev packages. You need
ocamlopt to obtain a standalone executable.
If you're not the administrator of the computer on which you're installing,
you can quote the previous paragraph to the administrator.
* Short Instructions
cd minisat
export MROOT=`pwd`
cd core
make Solver.o
cd ../simp
make SimpSolver.o
cd ../../picosat-936
./configure
make
cd ..
./configure
make
./test | grep ERROR
./bin/satallax.opt is the native code executable to use.
See test for examples of how to use it.
* Long Instructions
STEP 1:
Compile minisat (see minisat/README)
cd minisat
export MROOT=<minisat-dir> (or setenv in cshell)
cd core
make Solver.o
cd ../simp
make SimpSolver.o
cd ../..
STEP 2 (Optional. Only needed to extract proof information for proof terms.) :
Build picosat (including picomus):
cd picosat-936
./configure
make
cd ..
STEP 3:
If desired, edit the configure script to give the location of your picomus
and eprover executables. (If the executables are not found by the configure script,
you will need to give the location of the executables to satallax via the command line
options -P <picomus> -E <eprover> if they are needed.)
Run the configure script for Satallax.
./configure
STEP 4:
make
uses ocamlopt to make a standalone executable
./bin/satallax.opt
and uses ocamlc to make a bytecode executable
./bin/satallax
that depends on ocamlrun
STEP 5:
Test satallax using the examples in the script file:
./test
As long as you don't see a line with the word ERROR, it should be working.

Unable to make a portable Fortran executable in Cygwin

I'm attempting to compile a relatively simple Fortran executable so that it can be passed around to other Windows users that don't have Cygwin (or something of the sort) installed, however, I'm unable to get the executable to operate as a standalone. I've tried gfortran -static file.f and gfortran -static-libgfortran file.f, however other users always encounter this error:
The program can’t start because cygwin1.dll is missing from your computer. Try reinstalling the program to fix this problem.
From what I've read online (e.g. here), the -static option should be sufficient. I have verified that running the executable from my machine (DOS prompt) does work.
I have gcc (gfortran) version 4.7.3. I should also point out this is my first attempt at compiling portable Fortran.
Update
After realizing that this isn't a gfortran-specific issue (thanks to replies here), searches led me to related posts here and here
This is partially explained in the Cygwin FAQ. The solution is to install the mingw64-i686-gcc-fortran package with its dependencies, and cross-compile your code with i686-w64-mingw32-gfortran -static.
Just package the cygwin1.dll along with your binary file (both in the same folder) then it will run just fine.

Resources