Related
I used Pytorch DataLoader to create My "batch-data" loder,but I got some problem.
As the definition of the pytorch DataLoader Shuffer.
shuffle (bool, optional) – set to True to have the data reshuffled at every epoch (default: False)
the data will be reshuffled after every epoch.
But,though I set shuffle to False,I will probably also get the completely different batch every iteration in the same epoch which I expect .
testData = torchvision.datasets.FashionMNIST(
root="data",
train=False,
download=True,
transform=ToTensor()
)
CurrentFoldTestDataLoader = data.DataLoader(testData, batch_size=32, shuffle=False)
for i in range(1000):
test_features, test_labels = next(iter(CurrentFoldTestDataLoader))
print(i,test_labels)
Here I got the same batch in every iteration.
0 tensor([9, 2, 1, 1, 6, 1, 4, 6, 5, 7, 4, 5, 7, 3, 4, 1, 2, 4, 8, 0, 2, 5, 7, 9,
1, 4, 6, 0, 9, 3, 8, 8])
1 tensor([9, 2, 1, 1, 6, 1, 4, 6, 5, 7, 4, 5, 7, 3, 4, 1, 2, 4, 8, 0, 2, 5, 7, 9,
1, 4, 6, 0, 9, 3, 8, 8])
2 tensor([9, 2, 1, 1, 6, 1, 4, 6, 5, 7, 4, 5, 7, 3, 4, 1, 2, 4, 8, 0, 2, 5, 7, 9,
1, 4, 6, 0, 9, 3, 8, 8])
3 tensor([9, 2, 1, 1, 6, 1, 4, 6, 5, 7, 4, 5, 7, 3, 4, 1, 2, 4, 8, 0, 2, 5, 7, 9,
1, 4, 6, 0, 9, 3, 8, 8])
4 tensor([9, 2, 1, 1, 6, 1, 4, 6, 5, 7, 4, 5, 7, 3, 4, 1, 2, 4, 8, 0, 2, 5, 7, 9,
1, 4, 6, 0, 9, 3, 8, 8])
5 tensor([9, 2, 1, 1, 6, 1, 4, 6, 5, 7, 4, 5, 7, 3, 4, 1, 2, 4, 8, 0, 2, 5, 7, 9,
1, 4, 6, 0, 9, 3, 8, 8])
6 tensor([9, 2, 1, 1, 6, 1, 4, 6, 5, 7, 4, 5, 7, 3, 4, 1, 2, 4, 8, 0, 2, 5, 7, 9,
1, 4, 6, 0, 9, 3, 8, 8])
7 tensor([9, 2, 1, 1, 6, 1, 4, 6, 5, 7, 4, 5, 7, 3, 4, 1, 2, 4, 8, 0, 2, 5, 7, 9,
1, 4, 6, 0, 9, 3, 8, 8])
8 tensor([9, 2, 1, 1, 6, 1, 4, 6, 5, 7, 4, 5, 7, 3, 4, 1, 2, 4, 8, 0, 2, 5, 7, 9,
1, 4, 6, 0, 9, 3, 8, 8])
9 tensor([9, 2, 1, 1, 6, 1, 4, 6, 5, 7, 4, 5, 7, 3, 4, 1, 2, 4, 8, 0, 2, 5, 7, 9,
1, 4, 6, 0, 9, 3, 8, 8])
10 tensor([9, 2, 1, 1, 6, 1, 4, 6, 5, 7, 4, 5, 7, 3, 4, 1, 2, 4, 8, 0, 2, 5, 7, 9,
1, 4, 6, 0, 9, 3, 8, 8])
Why is this? Is my understanding of the definition of shuffle inaccurate?
The problem with your code is that you are re-instantiating the same iterator for each step in the for cycle. With shuffle=False the iterator generates the same first batch of images. Try to instantiate the loader outside the cycle instead:
loader = data.DataLoader(testData, batch_size=32, shuffle=False)
for i, data in enumerate(loader):
test_features, test_labels = data
print(i, test_labels)
I am trying to learn dynamic programming by followin an online video. The original video is using javascript and I am trying to use python to implement the same. However, I am not able to locate the error in my python implementation.
The question is as follows
write a fn. bestsum(targetsum, numbers) that takes in a targetsum and
an array of numbers as arguments.
The fn. should return an array containing the shortest combination of
numbers that add up to exactly the targetsum.
If there is a tie for the shortest combination, you may return any of
the shortest.
The javascript implementation is as follows.
const bestSum = (targetSum, numbers, memo={}) => {
if (targetSum in memo) return memo[targetSum];
if (targetSum === 0) return [];
if (targetSum < 0) return null;
let shortest_com = null;
for (let num of numbers) {
const remainder = targetSum - num;
const remainder_com = bestSum(remainder, numbers, memo);
if (remainder_com !== null) {
const combination = [...remainder_com, num];
if (shortest_com === null || combination.length < shortest_com.length) {
shortest_com = combination;
}
}
}
memo[targetSum] = shortest_com
return shortest_com;
};
console.log(bestSum(7, [5, 3, 4, 7]));
console.log(bestSum(8, [2, 3, 5]));
console.log(bestSum(8, [1, 4, 5]));
console.log(bestSum(100, [1, 2, 5, 25]));
Python code I implemented is
from typing import Any, Dict, List, Optional
def best_sum(target: int, numbers: List[int], memo:Dict[int, Any]={}) -> Optional[List[int]]:
if target in memo.keys():
return memo.get(target)
if target == 0:
return []
if target < 0:
return None
shortest_combination: Optional[List] = None
for num in numbers:
partial = best_sum(target=target - num, numbers=numbers, memo=memo)
if partial != None:
print(num)
partial.append(num)
if (shortest_combination == None) or (len(partial) < len(shortest_combination)):
shortest_combination = partial
memo[target] = shortest_combination
return shortest_combination
if __name__ == "__main__":
print(best_sum(target=100, numbers=[1, 2, 5, 25]))
For the test case: target=100, numbers=[1, 2, 5, 25].
Javascript implementation gives.
[ 25, 25, 25, 25 ]
But Python gives.
[25, 1, 1, 2, 1, 2, 1, 2, 1, 2, 5, 1, 2, 5, 1, 2, 5, 1, 2, 5, 1, 2, 5, 1, 2, 5, 1, 2, 5, 1, 2, 5, 1, 2, 5, 1, 2, 5, 1, 2, 5, 1, 2, 5, 1, 2, 5, 1, 2, 5, 1, 2, 5, 1, 2, 5, 1, 2, 5, 1, 2, 5, 1, 2, 5, 1, 2, 5, 1, 2, 5, 25, 1, 2, 5, 25, 1, 2, 5, 25, 1, 2, 5, 25, 1, 2, 5, 25, 1, 2, 5, 25, 1, 2, 5, 25, 1, 2, 5, 25, 1, 2, 5, 25, 1, 2, 5, 25, 1, 2, 5, 25, 1, 2, 5, 25, 1, 2, 5, 25, 1, 2, 5, 25, 1, 2, 5, 25, 1, 2, 5, 25, 1, 2, 5, 25, 1, 2, 5, 25, 1, 2, 5, 25, 1, 2, 5, 25, 1, 2, 5, 25, 1, 2, 5, 25, 1, 2, 5, 25, 1, 2, 5, 25, 1, 2, 5, 25, 1, 2, 5, 25, 1, 2, 5, 25, 1, 2, 5, 25, 1, 2, 5, 25, 1, 2, 5, 25, 1, 2, 5, 25, 1, 2, 5, 25, 1, 2, 5, 25, 1, 2, 5, 25, 1, 2, 5, 25, 1, 2, 5, 25, 1, 2, 5, 25, 1, 2, 5, 25, 1, 2, 5, 25, 1, 2, 5, 25, 1, 2, 5, 25, 1, 2, 5, 25, 1, 2, 5, 25, 1, 2, 5, 25, 1, 2, 5, 25, 1, 2, 5, 25, 1, 2, 5, 25, 1, 2, 5, 25, 1, 2, 5, 25, 1, 2, 5, 25, 1, 2, 5, 25]
The problem is in this snippet:
if partial != None:
partial.append(num)
if (shortest_combination == None) or (len(partial) < len(shortest_combination)):
shortest_combination = partial
The Javascript appoach creates a copy of the list remainder_com with the element num appended. In your approach, you're appending to partial directly without creating a copy. Thus, in every iteration the same list will be used to modifications, which is not desired. Change it to
# Creates a copy of `partial` with `num` appended
combination = partial[:] + [num]
if (shortest_combination == None) or (len(combination) < len(shortest_combination)):
shortest_combination = combination
This outputs [25, 25, 25, 25] as expected.
I'm trying to knowing which is the color of a pixel through it's x and y. The colors are from this image.
Capturing the colors with Photoshop I've got this list of colors:
"#5D385A", "#6D3B47", "#6F5C4B", "#50717A", "#547057", "#4C6180", "#717080", "#705574", "#726B59", "#5E4854", "#415A4B", "#425A64", "#3A4E6F"
However, when I try to get the color of a pixel from the image, this color doesn't match with the previous list. And, I've got 95 different colors when in the image there are only 13 different colors.
I open the image and get the color from a pixel with this class:
import PIL.Image
class Image:
def __init__(self, file):
self.image = PIL.Image.open(file).convert("RGB")
def get_color(self, x, y):
color = self.image.getpixel((x,y))
color = ("#%02x%02x%02x" % color).upper()
return color
Here is a short list of x and y of positions where I take the color:
144, 74
140, 46
150, 53
85, 87
160, 48
147, 60
137, 49
149, 53
148, 60
143, 52
161, 30
166, 23
134, 38
146, 29
155, 40
129, 37
154, 66
153, 38
151, 33
128, 36
How is that possible? How can I get 95 different colors from the image when there is only 13 different colors?
Edit I:
I have get all the colors from each pixel in the image and no one has the color what I get with Photoshop.
I have got 256 different colors, this is the list and number times found it.
{'#885F7D': 15, '#541B47': 15, '#68355B': 819, '#65355D': 17, '#78384A': 19, '#7E3942': 19, '#7B3846': 4588, '#7C3346': 39, '#7D3046': 50, '#773F4C': 21, '#785A49': 4, '#775F49': 35, '#765C49': 17540, '#7A4648': 21, '#756349': 62, '#785B49': 56, '#7C3546': 14, '#765D49': 12, '#7A4F48': 14, '#7C3746': 29, '#785549': 7, '#775D4A': 8, '#785749': 8, '#551743': 1, '#6A3158': 39, '#68325A': 6, '#86617E': 1, '#66385D': 31, '#6C2C56': 6, '#6C2A56': 7, '#6D2B54': 3, '#678D97': 88, '#2C5B6A': 60, '#416C79': 43, '#3F717A': 7, '#43686A': 64, '#5C5F71': 32, '#465771': 3, '#5E5666': 14, '#5D4C66': 7, '#644160': 2, '#683C5F': 2, '#659197': 2, '#1C606C': 88, '#32767E': 61, '#227B84': 59, '#3A757A': 60, '#803342': 16, '#7D3745': 6, '#3A727B': 7374, '#3B7479': 3, '#36747C': 11, '#6C4450': 104, '#82303F': 18, '#852B3B': 28, '#694A56': 3, '#3D7179': 15, '#694E59': 15, '#7D3545': 11, '#387283': 30, '#3B717B': 17, '#3A727D': 16, '#7B5A48': 37, '#832B43': 11, '#3B7184': 21, '#2A7C66': 1, '#5D5D4E': 2, '#3B7180': 23, '#41715A': 6, '#45714D': 44, '#297D59': 6, '#407256': 32, '#417160': 13, '#437155': 5275, '#467055': 16, '#327A58': 7, '#68514E': 4, '#407756': 2, '#3C7356': 22, '#56654F': 17, '#437154': 15, '#387457': 30, '#3F7169': 14, '#4B6D54': 9, '#805C49': 105, '#735E4A': 10, '#7F5747': 63, '#755C49': 9, '#457154': 16, '#337558': 45, '#536B52': 18, '#735944': 95, '#7B614F': 96, '#5D6750': 36, '#437156': 43, '#69624D': 21, '#457151': 29, '#3D7172': 10, '#70604B': 10, '#487458': 2, '#45744D': 96, '#447352': 2, '#23596C': 2, '#3C6A7E': 59, '#3F696B': 41, '#64819B': 37, '#204D73': 92, '#3C5E82': 60, '#3A5E8A': 93, '#385B92': 1, '#3C6182': 4212, '#5D7F9A': 1, '#0C4A72': 2, '#305E82': 118, '#5C6982': 118, '#8F8D9B': 26, '#646473': 3, '#7B7482': 118, '#5A7169': 14, '#39714D': 12, '#727182': 2691, '#797189': 13, '#3E724D': 1, '#3B7155': 51, '#885947': 1, '#7D5744': 1, '#866251': 1, '#4F7056': 51, '#675C48': 106, '#707289': 10, '#736E6C': 11, '#746B51': 12, '#756C58': 116, '#82705C': 27, '#135941': 27, '#235D44': 105, '#255B44': 24, '#1D5943': 45, '#2B5C46': 108, '#2B5C45': 8, '#746C58': 5469, '#2E5C46': 17561, '#7E705B': 32, '#4F634D': 10, '#7B6E5A': 32, '#45614B': 14, '#707584': 117, '#6E788C': 1, '#72716E': 1, '#75677E': 117, '#746684': 1, '#766D59': 26, '#3D5F49': 11, '#255943': 33, '#957890': 39, '#7A5174': 117, '#7C4B7C': 2, '#775E6A': 62, '#727152': 39, '#726C58': 32, '#365E47': 12, '#683F63': 37, '#7A5476': 4212, '#79507A': 37, '#766166': 38, '#7A6D57': 15, '#6E6B56': 13, '#2D5D46': 5, '#696A54': 4, '#2C5B45': 8, '#626852': 8, '#305C46': 24, '#2E5C44': 26, '#7E577B': 2, '#7C567A': 55, '#7A517A': 58, '#784F79': 1, '#5F3855': 1, '#724F68': 57, '#727053': 59, '#856C77': 89, '#51303E': 91, '#62444F': 56, '#60404E': 1, '#767558': 56, '#654654': 7521, '#623F53': 16, '#674B54': 7, '#747057': 25, '#746B58': 40, '#623E53': 15, '#654754': 40, '#757158': 11, '#6F6C56': 2, '#644554': 29, '#613D53': 16, '#6B5555': 15, '#6F5E56': 15, '#756D57': 11, '#634354': 7, '#634153': 13, '#716457': 7, '#644254': 7, '#654354': 4, '#305C48': 3, '#726C59': 2, '#7E7055': 6, '#817155': 7, '#48615F': 4, '#0A5649': 1, '#2E5C3E': 26, '#135669': 2, '#2C5B68': 34, '#2B5C53': 21, '#2E5C41': 58, '#415F60': 3, '#0F5667': 5, '#2C5B64': 4676, '#2C5B66': 19, '#2C5B5B': 17, '#2E5C4D': 8, '#175966': 7, '#375D61': 2, '#61675B': 1, '#2F5B64': 20, '#2C5B60': 16, '#2F5B4A': 3, '#55675E': 2, '#2E5C4A': 8, '#275C64': 23, '#674654': 10, '#385260': 1, '#684553': 26, '#1C5E66': 46, '#564D59': 5, '#3D5660': 8, '#4F4F5B': 10, '#5E4A57': 7, '#365961': 5, '#47525D': 8, '#5C4B57': 4, '#614756': 2, '#5A4759': 36, '#504A60': 10, '#404B67': 7, '#2C5667': 18, '#8B6B75': 1, '#2B4D71': 876, '#2D5D62': 18, '#7C6D7B': 1, '#58728D': 16, '#0A365F': 16, '#21553E': 4, '#335F4B': 1, '#35624D': 20, '#3D6752': 4}
I don't understand anything. How is it possible that no one pixel has the color that I've got in Photoshop?
Edit II:
With the same code, I have got the color map of another image. This is the image:
The predominant colors that you can see in this image are these:
"#F50A22", "#00EC83", "#00A200", "#0007A4", "#9D132B", "#734500", "#6230FF", "#F42AFF", "#BEFF00", "#EC7800", "#65DCD1", "#FF6D00" : "#004500"
Executing the test, how I said, the same code. I've got that all these colors are found it in the image among others! And no one of them how in the first image.
The results are:
Colors matched: {'#F50A22': 2245, '#00EC83': 9437, '#00A200': 21039, '#0007A4': 8772, '#9D132B': 99, '#734500': 2970, '#6230FF': 112, '#F42AFF': 5271, '#BEFF00': 2380, '#EC7800': 3076, '#65DCD1': 6503, '#FF6D00': 4709, '#004500': 6612}
colors matched: 13
And other colors found it in the image are:
Other colors: {'#FFFFFF': 1931, '#FCFFFD': 27, '#FAFFFB': 2, '#F7FEF9': 12, '#F4FEF7': 10, '#F6FEF8': 20, '#F6FDF8': 1, '#F9FEFA': 12, '#FBFEFC': 9, '#FEFFFE': 40, '#FAFEFB': 12, '#FBFFFC': 7, '#F3FEF6': 7, '#F4FDF6': 2, '#F5FDF7': 1, '#F2FDF5': 3, '#EEFDF2': 3, '#F2FDF6': 7, '#F4FEF8': 12, '#EFFDF4': 3, '#E5FCEC': 4, '#DAFAE5': 1, '#D3FAE0': 3, '#D4FAE0': 1, '#DAFAE4': 1, '#DFFBE8': 1, '#E9FCEF': 3, '#EDFDF2': 2, '#EFFDF3': 3, '#E2FBEA': 3, '#E2FCEA': 3, '#EFFEF3': 1, '#F2FEF5': 1, '#EDFCF1': 2, '#EBFDF0': 1, '#F1FDF4': 1, '#F3FEF7': 4, '#EDFDF1': 2, '#E7FCEE': 3, '#E3FCEB': 1, '#E0FCE9': 1, '#DCFBE6': 5, '#DAFBE5': 1, '#D9FAE4': 1, '#D9FAE3': 1, '#E3FCEC': 1, '#EEFDF3': 1, '#D7FAE2': 1, '#D1FADF': 1, '#D1FADE': 1, '#D6FAE2': 1, '#E1FBEA': 2, '#EBFDF1': 1, '#DFFBE9': 1, '#DEFBE7': 2, '#DBFBE5': 1, '#F6132A': 111, '#00EC84': 33, '#00EC85': 16, '#04EC86': 11, '#14EC87': 3, '#F40D23': 3, '#F20E24': 1, '#F50B22': 8, '#F11426': 2, '#F40C23': 1, '#EF1A28': 1, '#EE1B29': 1, '#F01827': 1, '#F21125': 1, '#F40D24': 1, '#F40E24': 1, '#774A03': 165, '#F40E23': 1, '#F50C22': 1, '#F6142A': 3, '#00EC82': 1, '#00EB82': 2, '#00EA7F': 1, '#00EB81': 1, '#6FE09C': 1, '#7E5416': 2, '#00A300': 78, '#00A500': 43, '#D9403B': 1, '#00AB16': 1, '#00A600': 40, '#00A700': 1123, '#5E2AFF': 2471, '#00B213': 2, '#00AA00': 6, '#7A4F0D': 3, '#6636FF': 2, '#00AE02': 2, '#00AC00': 3, '#00AB08': 2, '#00A800': 12, '#00A900': 8, '#00B317': 1, '#6C3CFF': 1, '#00AE00': 2, '#00AE14': 1, '#00A903': 1, '#7F55FE': 1, '#6CEE9F': 1, '#00AD00': 2, '#6CDCD2': 268, '#6A3CFE': 2, '#7549FF': 1, '#4ED688': 1, '#6B3DFF': 1, '#5E2BFF': 24, '#6839FD': 1, '#6231FE': 1, '#5E31FC': 2, '#00AF08': 1, '#00AC07': 1, '#6339FA': 1, '#5F33FB': 3, '#5F30FD': 3, '#00B10E': 1, '#656565': 1, '#00AB00': 2, '#00B02D': 2, '#6037F9': 1, '#5F2EFE': 2, '#5F3EF5': 1, '#5F32FC': 1, '#6040F4': 1, '#5F32FB': 2, '#6041F3': 1, '#6042F2': 1, '#7145FC': 1, '#5F2CFF': 10, '#6147EF': 1, '#6454EA': 1, '#6036F9': 1, '#685AEA': 1, '#00AF2F': 1, '#6B57EE': 1, '#00B110': 1, '#00AA02': 1, '#8ADBD3': 3, '#683CFB': 1, '#72DDD2': 3, '#6D47F8': 1, '#775EF3': 1, '#9CD7D1': 2, '#5E31FD': 1, '#00AB18': 1, '#82DCD3': 1, '#673EFB': 1, '#7450F9': 1, '#612EFF': 8, '#6236FB': 1, '#602CFF': 5, '#6B49F7': 1, '#602DFF': 7, '#5F2BFF': 6, '#6334FD': 1, '#2EEB8B': 1, '#704AFB': 1, '#6231FF': 1, '#6738FE': 1, '#612DFF': 3, '#3FEB8F': 1, '#66DBD1': 5, '#67D8D2': 1, '#00AE2B': 1, '#65DAD2': 1, '#F42DFF': 15, '#FC67FF': 6, '#F246FA': 1, '#F84CFF': 7, '#6233FF': 1, '#6ADCD2': 22, '#6132FE': 1, '#FBFEFE': 2, '#F434FF': 5, '#F8FDFC': 1, '#68DCD1': 33, '#6034FE': 1, '#FB5DFF': 2, '#FAFEFD': 2, '#F2FBFA': 1, '#6442FA': 1, '#6031FF': 1, '#F539FF': 7, '#F5FCFC': 1, '#E7F9F6': 1, '#F02AFF': 5, '#EFFBF9': 2, '#DDF6F3': 1, '#5F2EFF': 1, '#DD2BFF': 1, '#E82AFF': 1, '#F32AFF': 8, '#F744FF': 3, '#E7F9F7': 1, '#CFF2EF': 1, '#6136FD': 1, '#5F2AFF': 1, '#DD2AFF': 1, '#E42AFF': 1, '#EC2AFF': 2, '#E1F7F4': 1, '#C3EFEA': 1, '#6031FE': 1, '#EA2AFF': 2, '#ED2AFF': 1, '#DAF6F2': 1, '#BAEEE7': 1, '#6DDDD3': 2, '#6937FF': 1, '#ED37FE': 1, '#D7F5F1': 2, '#B6EDE6': 1, '#69DDD2': 2, '#74DFD4': 1, '#81DED9': 1, '#EF2BFF': 1, '#B3ECE7': 1, '#7ED7D4': 1, '#F22AFF': 2, '#D9F5F2': 1, '#B7EDE7': 1, '#DB39FC': 1, '#F12EFF': 1, '#E0F7F4': 1, '#C2EFEA': 1, '#87DBD3': 1, '#E737FE': 1, '#E6F8F6': 2, '#CCF2EE': 1, '#84DCD3': 1, '#ECFAF9': 1, '#D8F5F2': 1, '#65DCD0': 5, '#69DBCF': 6, '#6ADCD1': 1, '#98D3CD': 1, '#F440FC': 1, '#F42CFF': 7, '#F4FCFB': 1, '#6FD9CC': 2, '#6FD9CB': 3, '#6BDBCF': 1, '#7ED7C8': 1, '#80D3C1': 1, '#F531FF': 3, '#F42BFF': 35, '#FDFEFE': 2, '#F8FDFD': 1, '#83D8CB': 1, '#7ED3C2': 1, '#FF7100': 78, '#FEFFFF': 1, '#97D2CC': 1, '#FF7000': 40, '#FF6E00': 40, '#FF7925': 1, '#F33FF7': 1, '#6FDDD2': 2, '#FF6B00': 8, '#F62DF4': 1, '#F52BFB': 1, '#FF7409': 1, '#F62DF3': 1, '#F52BFC': 3, '#A2CFCA': 1, '#F73FE3': 1, '#F52DF9': 1, '#F42AFE': 1, '#FF7400': 4, '#FF730E': 1, '#FC36D5': 1, '#F62DF1': 1, '#F52BFD': 1, '#F52CFF': 6, '#F52DFF': 13, '#76DDD3': 2, '#FF6C00': 8, '#F831EA': 1, '#F52BFA': 3, '#F632FF': 1, '#8DDAD2': 1, '#F836E6': 1, '#F52BF9': 2, '#A4CCC8': 1, '#FF6A08': 1, '#7ADDD3': 1, '#FF690B': 1, '#F42BFE': 1, '#92D9D2': 2, '#FF6E0B': 1, '#F031FA': 1, '#A7C8C5': 1, '#FF6429': 1, '#FF7200': 62, '#FF671A': 1, '#7EDCD3': 1, '#EC35F6': 1, '#6CDACE': 1, '#6DDBD0': 1, '#FF671C': 1, '#FF7104': 1, '#FF6911': 1, '#FF642C': 1, '#FF6B23': 1, '#FF6E13': 1, '#FF7300': 5, '#F530FF': 1, '#F532FF': 3, '#6DDDD2': 1, '#F533FF': 1, '#F635FF': 1, '#F537FF': 8, '#F539FE': 2, '#F538FF': 9, '#00AC1A': 4, '#FF780E': 1, '#004B04': 29, '#FF873C': 1, '#FF7C1B': 1, '#FF7606': 4, '#FF780C': 1, '#FF7502': 1, '#FF7504': 1, '#FF770A': 2, '#004A03': 9, '#004A02': 5, '#F73FFF': 2, '#F435FF': 1, '#004700': 9, '#FF7A0F': 1, '#F52EFF': 1, '#F63BFF': 1, '#F638FF': 1, '#004600': 22, '#004B03': 3, '#004901': 8, '#FF7D1D': 1, '#F43EFB': 1, '#FF8533': 1, '#F62DF6': 1, '#FF7F24': 1, '#004902': 3, '#004900': 1, '#F441FC': 1, '#C1E057': 1, '#C2FD00': 5, '#C1F700': 1, '#C0FE00': 176, '#C4EE30': 2, '#C3E846': 1, '#C2FB00': 2, '#FEFEFE': 9, '#004C07': 11, '#B8FB00': 2, '#C3FB00': 1, '#FDFEFD': 5, '#BAFB00': 2, '#C5F11A': 2, '#B3F600': 2, '#BEFC00': 1, '#C1FD00': 7, '#FBFCFB': 3, '#BCDE52': 1, '#BBFE00': 9, '#FAFBFA': 2, '#B6F700': 1, '#BDFB00': 1, '#C3F800': 5, '#F331FF': 1, '#B2F500': 1, '#BDF900': 1, '#BDFD00': 1, '#BBFC00': 2, '#BDFE00': 10, '#C3EA40': 1, '#FCFDFC': 4, '#B5F600': 2, '#BCFD00': 7, '#C4E847': 1, '#CDFD09': 3, '#2337B3': 1, '#4251B6': 1, '#C5ED37': 1, '#D5FF3E': 17, '#0012A7': 625, '#004B06': 1, '#CFFE22': 5, '#B6F900': 2, '#C5FD00': 5, '#D3FF3C': 3, '#005010': 1, '#CBFD00': 5, '#C2FE00': 3, '#B8F900': 2, '#D2FE31': 8, '#C8FD00': 3, '#B9FA00': 2, '#C4FD00': 3, '#F8FBF9': 2, '#CCFE08': 3, '#F4F6F4': 2, '#C7FD00': 5, '#EBF1EC': 1, '#F8F9F7': 1, '#E1EAE4': 1, '#004701': 1, '#132AAF': 2, '#D5E2D8': 1, '#F1F5F2': 2, '#D1DFD5': 1, '#EC8417': 1, '#D4E1D7': 1, '#F3F5F3': 1, '#D9E4DC': 1, '#EB7800': 15, '#ED7B00': 133, '#F6F8F5': 1, '#DEE8E0': 1, '#E6EDE6': 1, '#FAFDFB': 1, '#EAF0EB': 1, '#EEF3EF': 1, '#EA7700': 2, '#F5F7F5': 1, '#C2E64E': 1, '#CAFD00': 2, '#F7FAF8': 1, '#E87700': 2, '#EA7800': 7, '#004C06': 2, '#CFFE20': 2, '#004A05': 1, '#E37600': 1, '#E67700': 1, '#00591D': 1, '#990A22': 2077, '#A6293C': 1, '#021EAA': 1, '#0007A3': 6, '#0009A1': 2, '#001697': 2, '#000B9F': 2, '#00119B': 1})
total other colors: 448
Both images are png.
How is it possible that I found all the colors among others in the second image and not found anyone of the color searched in the first image?
you can see 13 colors yes! but the code doesn't because it's more precise than your eyes.
try zooming into the picture more, you'll see that between the colors there is another lighter one, which can consist of more than one color to go from one to the other, also I noticed some black and white at the left side "maybe it's just from your snipping tool or something"
but what I'm saying is, the code is right :)
you can try and create a photo using paint and only two colors with the fill tool, and make sure it's only one color without any gradient.
I found the problem and the solution. The problem is that I'm using images which has been created from a previous export. I mean, I have resized and make an export from an original imagin and in this momento something happens in Photoshop or whatever other program which produce an image with many other colors and not the original colors.
So, you have to run the process over the original version of the image, the export from the vectorized image. If you make an export from this export and then run the process, you will have problems like me.
I'm using the scipy.stats.randint to get random numbers.
Here is my source code and result.
Input:
from scipy.stats import randint
randint.rvs(0.00001, 10, size=100)
Output:
array([6, 4, 6, 7, 9, 7, 3, 0, 2, 5, 1, 1, 0, 3, 6, 7, 3, 6, 4, 8, 6, 5,
0, 0, 5, 1, 3, 2, 3, 1, 0, 6, 5, 2, 0, 0, 9, 1, 5, 2, 3, 6, 1, 4,
3, 1, 4, 4, 9, 5, 6, 3, 4, 3, 7, 7, 2, 4, 0, 2, 0, 6, 8, 1, 5, 6,
4, 6, 5, 0, 8, 8, 5, 9, 3, 2, 8, 7, 1, 4, 6, 0, 7, 3, 9, 1, 2, 7,
7, 6, 4, 3, 3, 3, 4, 7, 7, 4, 1, 1])
My question is, I've set the low to 0.000001, but How the '0's came out from output.
Thanks for your help.
Scipy's randint invokes mtrand.randint, that is a part of Numpy package.
As you can see from its source code, lower bound is truncated using (int)(low).
So, to get random numbers from closed interval [1, 10], do the following:
randint.rvs(1, 11, size=100)
Note, you need to increase high bound by 1, as it seen from the form of probability distribution (pmf) for randint.
l have an RGB image of dimension (224,224,3). l applied superpixel segmentation on it using SLIC algorithm.
As follow :
img= skimageIO.imread("first_image.jpeg")
print('img shape', img.shape) # (224,224,3)
segments_slic = slic(img, n_segments=1000, compactness=0.01, sigma=1) # Up to 1000 segments
segments_slic.shape
(224,224)
Number of returned segments are :
np.max(segments_slic)
Out[49]: 595
From 0 to 595. So, we have 596 superpixels (regions).
Let's take a look at segments_slic[0]
segments_slic[0]
Out[51]:
array([ 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5,
5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7,
8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9,
10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12,
12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14,
14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16,
16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18,
18, 18, 18, 18, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 20, 20,
20, 20, 20, 20, 20, 20, 20, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
21, 21, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23,
23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 25, 25, 25, 25,
25, 25, 25])
What l would like to get ?
for each superpixel region make two arrays as follow:
1) Array : contain the indexes of the pixels belonging to the same superpixel.
For instance
superpixel_list[0] contains all the indexes of the pixels belonging to superpixel 0 .
superpixel_list[400] contains all the indexes of the pixels belonging to superpixel 400
2)superpixel_pixel_values[0] : contains the pixel values (in RGB) of the pixels belonging to superpixel 0.
For instance, let's say that pixels 0, 24 , 29, 53 belongs to the superpixel 0. Then we get
superpixel[0]= [[223,118,33],[245,222,198],[98,17,255],[255,255,0]]# RGB values of pixels belonging to superpixel 0
What is the efficient/optimized way to do that ? (Because l have l dataset of images to loop over)
EDIT-1
def sp_idx(s, index = True):
u = np.unique(s)
if index:
return [np.where(s == i) for i in u]
else:
return [s[s == i] for i in u]
#return [s[np.where(s == i)] for i in u] gives the same but is slower
superpixel_list = sp_idx(segments_slic)
superpixel = sp_idx(segments_slic, index = False)
In superpixel_list we are supposed to get a list containing the index of pixels belonging to the same superpixel.
For instance
superpixel_list[0] is supposed to get all the pixel indexes of the pixel affected to superpixel 0
however l get the following :
superpixel_list[0]
Out[73]:
(array([ 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2,
3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5,
5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7,
7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10,
10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13]),
array([0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5,
6, 0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6,
7, 0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 5, 0, 1,
2, 3, 4, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2]))
Why two arrays ?
In superpixel[0] for instance we are supposed to get the RGB pixel values of each pixel affected to supepixel 0 as follow :
for instance pixels 0, 24 , 29, 53 are affected to superpixel 0 then :
superpixel[0]= [[223,118,33],[245,222,198],[98,17,255],[255,255,0]]
However when l use your function l get the following :
superpixel[0]
Out[79]:
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
Thank you for your help
Can be done using np.where and the resulting indices.
def sp_idx(s, index = True):
u = np.unique(s)
return [np.where(s == i) for i in u]
superpixel_list = sp_idx(segments_slic)
superpixel = [img[idx] for idx in superpixel_list]