New to Verilog, Basys3 board and Vivid 2021.2.
Trying to implement a typical stopwatch with Stop/Start and Lap/Reset buttons.
A divider produces 1kHz and 100Hz clock from the board clock, 100Hz is for button debounce (and seven segment display multiplexing, next todo), the 1kHz drives a 20 bit 5 x 4 bit BCD counter, the low 16 bits of which drive a latch to freeze the display, the latch drives the 16 on board LEDs.
I've test 'wired' this up and the modules perform as expected. It's only when I add the FSM I run into trouble.
The FSM is simple, the two buttons determine the state changes and the state sets three outputs to control the counter.
The state module as been through many versions, tried using buttons in the sensitivity list, tried with button edges and levels, tried *, tried blocking and non-blocking assignments, can't get it right. The current error is:
[Synth 8-3332] Sequential element (state/transfer_reg) is unused and will be removed from module stopwatch.
The error changes but it's always Synth 8-3332 removing something, even curr_state or next_state.
The RTL synthesis schematic shows exactly what I expect, later schematics show the two buttons, 16 LEDs and nothing in between.
I'm lost at this stage, have I missed something fundamental?
`timescale 1ns / 1ps
////////////////////////////////////////////////////////////////////////////////
//
// Create Date: 02/02/2022 0800
//
// Module Name: state
// Project Name: Stop Watch
// Target Devices: BASYS 3
//
// state machine
//
// inputs:
// start-stop button via debounce (both edg and level are available)
// lap-reset buttonvia debounce (both edg and level are available)
//
// outputs:
// control 4 x 4 bit BCD counters and output latch
// clear state
// enabvble couter to count
//. transfer counter value to latch
//
////////////////////////////////////////////////////////////////////////////////
module state (
input clk,
input lap_reset,
input start_stop,
output reg clear,
output reg enable,
output reg transfer
);
// state encodings
localparam
RESET_0 = 3'd0,
STOPPED_1 = 3'd1,
RUNNING_2 = 3'd2,
PRELAP_3 = 3'd3,
LAP_4 = 3'd4;
// state reg
reg[2:0] curr_state;
reg[2:0] next_state;
// setup
initial
begin
curr_state <= RESET_0;
next_state <= RESET_0;
enable <= 0;
clear <= 0;
transfer <= 0;
end
// sync state transitons to clk
// always # (posedge clk)
// begin
// curr_state <= next_state;
// end
// state machine
always # (posedge clk)
begin
curr_state <= next_state;
case (curr_state)
RESET_0:
begin
// init, stop counter, clear counter
// transfer count to latch
enable <= 0;
clear <= 1;
transfer <= 1;
next_state <= STOPPED_1;
end
STOPPED_1:
begin
// stop counter, clear counter
enable <= 0;
clear <= 0;
transfer <= 0;
if (start_stop)
next_state <= STOPPED_1;
else if (lap_reset)
next_state <= RESET_0;
else
next_state <= curr_state;
end
RUNNING_2:
begin
// start or continue counting
// transfer count to latch
enable <= 1;
clear <= 0;
transfer <= 1;
if (start_stop)
next_state <= STOPPED_1;
else if (lap_reset)
next_state <= PRELAP_3;
else
next_state <= curr_state;
end
PRELAP_3:
begin
// start or continue counting
// don't update latch
enable <= 1;
clear <= 0;
transfer <= 0;
next_state <= LAP_4;
end
LAP_4:
begin
// continue counting
// transfer counter to latch
enable <= 1;
clear <= 0;
transfer <= 1;
if (start_stop)
next_state <= RUNNING_2;
else if (lap_reset)
next_state <= PRELAP_3;
else
next_state <= curr_state;
end
default:
begin
enable <= 0;
clear <= 0;
transfer <= 0;
next_state <= RESET_0;
end
endcase
end
endmodule
Getting somewhere at last, thankyou all.
After correcting a logical error and a couple of constants 0'b0 which make little sense (the compiler didn't complain about them) and doing suggested fixes my stopwatch works.
The SM structure is the 3 blocks, sync transitions, next state 'gotos' and state actions. I started with the suggested always # (*) but had to change to a posedge clk for it to work, not sure why.
Got rid of the inferred latches and now understand why they come about.
About generating a reset signal, I assume the Artix chip has one but it doesn't get a mention in the supplied xdc file, I was trying to simulate a reset held low (active) then going high a short time later, determined by a clock divider - which should have a reset... Also read Xilinx WP272 which tells a different story.
Thanks again.
Just from www.javatpoint.com/verilog-initial-block:
"An initial block is not synthesizable and cannot be converted into a
hardware schematic with digital elements. The initial blocks do not
have more purpose than to be used in simulations. These blocks are
primarily used to initialize variables and drive design ports with
specific values."
I am not sure now about the code for that FPGA, but in common ASICs I would remove the "initial" code section, which you use to implement the reset behaviour and add an actual reset section in the always#.
always#(posedge clk)
begin
if (rst) begin
// do the reset
curr_state <= RESET_0;
next_state <= RESET_0;
enable <= 0;
clear <= 0;
transfer <= 0;
end else begin
// the rest
end
end
EDITED:
Never leave a signal without a default value, as it will infer latches instead of flip-flops, which create problems when inferring sequential logic (of course latches are useful in some scenarios).
When one wants to build a finite state machine (FSM) there are two common approaches: Mealy and Moore. I will explain how the sequential logic should be implemented with a Moore FSM:
A synchronous always# block to write the state: cur_state <= next state.
A combinational block to generate next_state value based on cur_state and inputs.
A combinational block to generate outputs based on the state.
always#(posedge clk, rst)
begin
if (rst = '1') begin
cur_state <= State_0;
end else begin
cur_state <= next_state;
end
end
always_comb(cur_state, my_inputA)
begin
if (cur_state = State_0) begin
if(my_inputA)
next_state = State_1;
else
next_state = Stage_0;
end else if (cur_state = State_1) begin
next_state = State_2;
end
end
always_comb(cur_state)
begin
if (cur_state = State_0) begin
my_outputA = '1';
end else if (cur_state = State_1) begin
my_outputA = '0';
end else if (cur_state = State_2) begin
my_outputA = '1';
end
end
Related
I have a question about using timers and clocks in Verilog. I want to set up a custom reg to compare to an accumulator, which will control the state of an LED. The board uses inverse logic, so 0 is high on the LED. There are a few concepts I just need some clarification on. The clock is 100 MHz.
always #(posedge clk100 or negedge reset_)
begin
cust_LED_counter <= (cust_LED_counter<cust_LED_timer) ? cust_LED_counter + 1'b1 : 16'd0;
cust_LED_timer1 <= (cust_LED_counter == cust_LED_timer);
if(!reset_)
begin
cust_LED1 <= 'b0;
cust_LED_timer <= 'd0;
cust_LED_timer1 <= 'd0;
end
else
begin
cust_LED1 <= ~cust_LED_timer1;
end
end
For the accumulator, what is the action that resets it and allows for blinking to happen? Would it not hit the cust_LED_timer value and stay at that high reading?
I think I'm misunderstanding how a FPGA clock operates. Assuming this would cause a blinking action in the LED, it would mean some timer hit the upper limit and reset; however, I'm not sure if this would take place in the counter portion of the code, or instead would occur where the clock/reset is defined.
Also, based on how this layout looks it wouldn't be a uniform blink, in terms of equal time on and off. Is there a way to implement such a system for custom input?
Here's a simple module that should blink the LED with a 50-50 duty cycle for an arbitrary number of clocks (up to 2^26)
module blink(input clk, input rst, input [25:0] count_max, output LED);
reg [25:0] counter, next_count;
assign LED = counter < count_max >> 1;
always #(posedge clk or posedge rst)
begin
if (rst)
counter <= 0;
else
counter <= next_count;
end
always #* begin
if (counter < count_max - 1)
next_count = counter + 1;
else
next_count = 0;
end
endmodule // blink
Let me know if this doesn't compile! I don't have a verilog compiler where I'm writing this from at the moment!
I have a simple module that uses a few different states. The Problem I am encountering is say if I want to stay at the same state for multiple clock cycles.
In this case, my current state is synchronous and updates on clock cycle. It executes that always block which goes from state 0 -> state 1. Then once pstate reaches state 1, I attempt to have it wait to reach the next state. The reason for this is to collect data off of the data_int input. I don't care what the data is, but I need to read off it for 2 clock cycles.
I believe this doesn't work however because in the first case, I set the next state to the same value as it previously was, so it is unable to trigger. The reason I don't think I could just also add 'data_int' to the trigger list, is because its possible it remains the same value for a clock cycle and thus the always block wouldn't trigger.
I'm wondering if there is another way to do this, I guess essentially I need the always block to retrigger on clock edge as well..
module TestModule(
input clk, rst, data_int);
reg [2:0] pstate = 0;
reg [2:0] nstate = 0;
ref [2:0] count = 0;
always#(pstate) begin
//only fires when pstate is assigned to a different value?
//would I make a internal clock to constantly have this always run?
if(pstate == 0) begin
nstate <= 1;
end
else if(pstate == 1) begin
//stay at this state for multiple clock cycles
//collect data off of data_int
count = count + 1;
if(count > 2) begin
nstate <= 2;
end else begin
nstate <= 1;
end
end
end
always#(posedge clk, posedge rst) begin
if(rst) begin
pstate <= 0;
end
else begin
pstate <= nstate;
end
end
pay attention to the usage of = and <=.
count is never reset, if you want to enter pstate == 3'h1 state multiple times.
use always#(*) to save your life. synthesis tools will respect the logic inside the always block, but simulation tools won't, which will lead to simulation mismatches.
The following code is based on my understanding of your question.
reg [2:0] pstate;
reg [2:0] nstate;
reg count; // 1-bit 'count' is enough to count 2 cycles
always#(posedge clk or posedge rst)begin
if(rst)begin
pstate <= 3'h0;
end
else begin
pstate <= nstate;
end
end
always#(*)begin
case(pstate)
3'h0: nstate = 3'h1;
3'h1:begin // lasts 2 cycles
if(count)begin
nstate = 3'h2;
end
else begin
nstate = 3'h1;
end
3'h2: (....)
default: (....)
end
endcase
end
always#(posedge clk or posedge rst)begin // 'count' logic
if(rst)begin
count <= 1'h0;
end
else if((pstate == 3'h1) & count)begin // this branch is needed if you don't
// count to the max. value of 'count'
count <= 1'b0;
end
else if(pstate == 3'h1)begin
count <= ~count; // if 'count' is multi-bit, use 'count + 1'
end
end
I was following a tutorial on SPI master in Verilog. I've been debugging this for about three hours now and cannot get it to work.
I've been able to break down the issue into a minimum representative issue. Here are the specifications:
We have two states, IDLE and COUNTING. Then, on the clock positive edge, we check:
If the state is IDLE, then the counter register is set to 0. If while in this state the dataReady pin is high, then the state is set to COUNTING and the counter is set to all 1s.
If the state is COUNTING, the state remains COUNTING as long as counter is not zero. Otherwise, the state is returned to IDLE.
Then, we count on the negative edge:
On the negative edge of clock if state is COUNTING, then decrement counter.
Here's the code I came up with to fit this specification:
// look in pins.pcf for all the pin names on the TinyFPGA BX board
module top (
input CLK, // 16MHz clock
input PIN_14,
output LED, // User/boot LED next to power LED
output USBPU // USB pull-up resistor
);
// drive USB pull-up resistor to '0' to disable USB
assign USBPU = 0;
reg [23:0] clockDivider;
wire clock;
always #(posedge CLK)
clockDivider <= clockDivider + 1;
assign clock = clockDivider[23];
wire dataReady;
assign dataReady = PIN_14;
parameter IDLE = 0, COUNTING = 1;
reg state = IDLE;
reg [3:0] counter;
always #(posedge clock) begin
case (state)
IDLE: begin
if (dataReady)
state <= COUNTING;
end
COUNTING: begin
if (counter == 0)
state <= IDLE;
end
endcase
end
always #(negedge clock) begin
if (state == COUNTING)
counter <= counter - 1;
end
always #(state) begin
case (state)
IDLE:
counter <= 0;
COUNTING:
counter <= counter;
endcase
end
assign LED = counter != 0;
endmodule
With this, we get the error:
ERROR: multiple drivers on net 'LED' (LED_SB_DFFNE_Q.Q and LED_SB_DFFNE_Q_1.Q)
Why? There is literally only one assign statement on the LED.
First of all it would not be easy to come up with a synthesizable model in such a case. But, you do not need any negedge logic to implement your model. Also you made several mistakes and violated many commonly accepted practices.
Now about some problems in your code.
By using non-blocking assignment in the clock line you created race condition in the simulation which will probably cause incorrect simulation results:
always #(posedge CLK)
clockDivider <= clockDivider + 1; // <<< this is a red flag!
assign clock = clockDivider[23];
...
always #(posedge clk)
you incorrectly used nbas in your always block
always(#state)
... counter <= conunter-1; // <<< this is a red flag again!
your state machine has no reset. Statements like reg state = IDLE; will only work in simulation and in some fpgas. It is not synthesizable in general. I suggest that you do not use it but provide a reset signal instead.
Saying that, i am not aware of any methodology which would use positive and negative edges in such a case. So, you should not. All your implementation can be done under the posedge, something like the following. However
always #(posedge clock) begin
if (reset) begin // i suggest that you use reset in some form.
state <= IDLE;
counter <= 0;
end
else begin
case (state)
IDLE: begin
if (dataReady) begin
state <= COUNTING;
counter <= counter - 1;
end
end
COUNTING: begin
if (counter == 0)
state <= IDLE;
else
counter <= counter - 1;
end
endcase
end
end
I hope i did it right, did not test.
Now you do not need the other two always blocks at all.
I have a Verilog module with the fowling input and outputs
module Foo
#(
parameter DATA_BITS = 32,
parameter ENUM_BITS = 8,
parameter LED_BITS = 8
)
(
//Module IO declarations
input logic Clk_i,
input logic Reset_i,
input logic NoGoodError_i,
input logic EncoderSignal_i,
input logic [DATA_BITS-1:0]DistanceCount_i,
//Enable the gate
output logic GateEnable_o
)
The overall design idea is the following. When I receive the positive edge of the NoGoodError_i start a counter and count up to the DistanceCount_i count via the positive edges of the EncoderSignal_i signal. That seems pretty straight forward, however my design challenge becomes that I could get another NoGoodError_i before I am finished counting the previous count. So, I need a way to get up to 10 NoGoodError_i signal in row and start counters. Then reuse the counters once they expire (Rollover). Please any design tips would be greatly appreciated.
I would take an array of counters each with a 'busy' bit. If the bit is set the counter is running.
Next you use a modulo-10 index which busy bit to set.
I would raise a flag if the counter you want to start is still busy.
I just typed this in on the fly: not parsed for syntax and typos are possible (even likely):
reg [DATA_BITS-1:0] counter [0:9];
reg [9:0] busy;
reg [3:0] cntr_to_start;
always #(posedge Clk_i or posedge Reset_i)
begin
if (Reset_i)
begin
busy <= 10'b0;
for (i=0; i=<10; i=i+1)
counter[i] <= 'b0;
cntr_to_start <= 'b0;
end
begin
// Run a counter if it's busy flag is set
// At max (rollover) stop and clear the busy flag
for (i=0; i<10; i=i+1)
begin
if (busy[i])
begin
if (counter[i]==(33'b1<<DATA_BITS)-1)
begin
counter[i] <= 1'b0;
busy[i] <= 1'b0;
end
else
counter[i] <= counter[i] + 1;
end
end
// If no good start the next counter
// If we have no next counter: ????
if (NoGoodError_i)
begin
if (busy[cntr_to_start])
// Houston: we have a problem!
// More errors then we have counters
else
begin
busy[cntr_to_start] <= 1'b1;
if (cntr_to_start==9)
cntr_to_start <= 'b0;
else
cntr_to_start <= cntr_to_start + 1;
end
end
end
This is something that I think should be doable, but I am failing at how to do it in the HDL world. Currently I have a design I inherited that is summing a multidimensional array, but we have to pre-write the addition block because one of the dimensions is a synthesize-time option, and we cater the addition to that.
If I have something like reg tap_out[src][dst][tap], where src and dst is set to 4 and tap can be between 0 and 15 (16 possibilities), I want to be able to assign output[dst] be the sum of all the tap_out for that particular dst.
Right now our summation block takes all the combinations of tap_out for each src and tap and sums them in pairs for each dst:
tap_out[0][dst][0]
tap_out[1][dst][0]
tap_out[2][dst][0]
tap_out[3][dst][0]
tap_out[0][dst][1]
....
tap_out[3][dst][15]
Is there a way to do this better in Verilog? In C I would use some for-loops, but that doesn't seem possible here.
for-loops work perfectly fine in this situation
integer src_idx, tap_idx;
always #* begin
sum = 0;
for (scr_idx=0; src_idx<4; src_idx=scr_idx+1) begin
for (tap_idx=0; tap_idx<16; tap_idx=tap_idx+1) begin
sum = sum + tap_out[src_idx][dst][tap_idx];
end
end
end
It does unroll into a large combinational logic during synthesis and the results should be the same adding up the bits line by line.
Propagation delay from a large summing logic could have a timing issue. A good synthesizer should find the optimum timing/area when told the clocking constraint. If logic is too complex for the synthesizer, then add your own partial sum logic that can run in parallel
reg [`WIDHT-1:0] /*keep*/ partial_sum [3:0]; // tell synthesis to preserve these nets
integer src_idx, tap_idx;
always #* begin
sum = 0;
for (scr_idx=0; src_idx<4; src_idx=scr_idx+1) begin
partial_sum[scr_idx] = 0;
// partial sums are independent of each other so the can run in parallel
for (tap_idx=0; tap_idx<16; tap_idx=tap_idx+1) begin
partial_sum[scr_idx] = partial_sum[scr_idx] + tap_out[src_idx][dst][tap_idx];
end
sum = sum + partial_sum[scr_idx]; // sum the partial sums
end
end
If timing is still an issue, then you have must treat the logic as multi-cycle and sample the value some clock cycles after the input changed.
In RTL (the level of abstraction you are likely modelling with your HDL), you have to balance parallelism with time. By doing things in parallel, you save time (typically) but the logic takes up a lot of space. Conversely, you can make the adds completely serial (do one add at one time) and store the results in a register (it sounds like you want to accumulate the total sum, so I will explain that).
It sounds like the fully parallel is not practical for your uses (if it is and you want to rewrite it, look up generate statements). So, you'll need to create a small FSM and accumulate the sums into a register. Here's a basic example, which sums an array of 16-bit numbers (assume they are set somewhere else):
reg [15:0] arr[0:9]; // numbers
reg [31:0] result; // accumulated sum
reg load_result; // load signal for register containing result
reg clk, rst_L; // These are the clock and reset signals (reset asserted low)
/* This is a register for storing the result */
always #(posedge clk, negedge rst_L) begin
if (~rst_L) begin
result <= 32'd0;
end
else begin
if (load_result) begin
result <= next_result;
end
end
end
/* A counter for knowing which element of the array we are adding
reg [3:0] counter, next_counter;
reg load_counter;
always #(posedge clk, negedge rst_L) begin
if (~rst_L) begin
counter <= 4'd0;
end
else begin
if (load_counter) begin
counter <= counter + 4'd1;
end
end
end
/* Perform the addition */
assign next_result = result + arr[counter];
/* Define the state machine states and state variable */
localparam IDLE = 2'd0;
localparam ADDING = 2'd1;
localparam DONE = 2'd2;
reg [1:0] state, next_state;
/* A register for holding the current state */
always #(posedge clk, negedge rst_L) begin
if (~rst_L) begin
state <= IDLE;
end
else begin
state <= next_state;
end
end
/* The next state and output logic, this will control the addition */
always #(*) begin
/* Defaults */
next_state = IDLE;
load_result = 1'b0;
load_counter = 1'b0;
case (state)
IDLE: begin
next_state = ADDING; // Start adding now (right away)
end
ADDING: begin
load_result = 1'b1; // Load in the result
if (counter == 3'd9) begin // If we're on the last element, stop incrementing counter, we are done
load_counter = 1'b0;
next_state = DONE;
end
else begin // Otherwise, keep adding
load_counter = 1'b1;
next_state = ADDING;
end
end
DONE: begin // finished adding, result is in result!
next_state = DONE;
end
endcase
end
There are lots of resources on the web explaining FSMs if you are having trouble with the concept, but they can be used to implement your basic C-style for loop.