What is different between train and test - scikit-learn

from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=87)
plt.scatter(x_train[:, 0], x_train[:,1], c=y_train)
Can someone explain to me about the code, what is the different between train and test and how does [:, 0] and [:,1] about?

train_test_split() divides the data X (independent variables) and y (dependent variable) into a 80/20 split (train_size = 0.8, test_size = 0.2, but you only specify test_size). For example, your dataset consists of 100 rows then your x_train and y_train would consist of 80 random rows from the original 100 rows. The rest belongs to the x_test and y_test data (e.g. 20 rows). By setting the random_state, you ensure that the random splits are always reproducible when you enter the same number. This is done to prevent data leakage or spill-over during model training. More info can be found here.
The plot function then creates a scatterplot, where all the rows from the first column (of x_train) are used to create the x-axis coordinates and all the rows from the second column are used to create the y-axis coordinates, where the datapoints are coloured based on y_train values.

Related

Random Forest feature importance showing variable of all zero's halfway up the list

I have run a random forest regressor on some data with 10000 rows and about 700 variables using the following code
X_train, X_test, y_train, y_test = train_test_split(features, labels, test_size = 0.25, random_state = 42)
model = RandomForestRegressor(n_estimators = 1000, max_depth=20)
model.fit(X_train, y_train[:,0])
One of my variables contains all zeros and yet it is showing up about halfway when I look at an ordered list of
model.feature_importances_
How can a random forest be using a column that contains zero's for every data point more than other columns that aren't static?

Random subsets of a dataset

I would like to compare the classification performance (accuracy) of different classifiers (e.g. CNN, SVM.....), depending on the size of the training data set.
Given is a dataset of images (e.g., MNIST), from which 80% of the images are randomly determined but in compliance with class balance. Subsequently, 80% of the images for the next smaller subset are to be determined from this subset in the same way again. This is repeated until finally a small training amout of about 1000 images is reached.
Each of the classifiers should now be trained with each these subsets.
The aim is to be able to make a statement like for example that from a training size of 5000 images the classifier A is significantly better than classifier B.
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0, test_size= 0.2, stratify=y)
X_train_2, X_test_2, y_train_2, y_test_2 = train_test_split(X_train, y_train, random_state=0, test_size= 0.2, stratify=y_train)
X_train_3, X_test_3, y_train_3, y_test_3 = train_test_split(X_train_2, y_train_2, random_state=0, test_size= 0.8, stratify=y_train_2)
.....
.....
.....
My problem is that I am not sure if this is really random sampling when I use the above code. Would it better to get the subsets, e.g. using numpy.random.randint?
For any help, I would be very grateful.

What does this Code mean? (Train Test Split Scikitlearn)

Everywhere I go I see this code. Need help understanding this.
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X,y,testsize = 0.20)
what does X_train, X_test, y_train, y_test mean in this context which should I put in fit() and predict()
As the documentation says, what train_test_split does is: Splits arrays or matrices into random train and test subsets. You can find it here: https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html. I believe the right keyword argument is test_size instead of testsize and it represents the proportion of the dataset to include in the test split if it is float or the absolute number of test samples if is is an int.
X and y are the sequence of indexables with same length / shape[0], so basically the arrays/lists/matrices/dataframes to be split.
So, all in all, the code splits X and y into random train and test subsets (X_train and X_test for X and y_train and y_test for y). Each test subset should contain 20% of the original array entries as test samples.
You should pass the _train subsets to fit() and the _test subsets to predict(). Hope this helps~
In simple terms, train_test_split divides your dataset into training dataset and validation dataset.
The validation set is used to evaluate a given model.
So in this case validation dataset gives us idea about model performance.
X_train, X_test, y_train, y_test = train_test_split(X,y,testsize = 0.20)
The above line splits the data into 4 parts
X_train - training dataset
y_train - o/p of training dataset
X_test - validation dataset
y_test - o/p of validation dataset
and testsize = 0.2 means you'll have 20% validation data and 80% training data
`Basically this code split your data into two part.
is used for training
is for testing
And with the help of the test_size variable you can set the size of testing data
After dividing data into two part you have to fit training data into your model with fit() method.
`

ML Model not predicting properly

I am trying to create an ML model (regression) using various techniques like SMR, Logistic Regression, and others. With all the techniques, I'm not able to get efficiency more than 35%. Here's what I'm doing:
X_data = [X_data_distance]
X_data = np.vstack(X_data).astype(np.float64)
X_data = X_data.T
y_data = X_data_orders
#print(X_data.shape)
#print(y_data.shape)
#(10000, 1)
#(10000,)
X_train, X_test, y_train, y_test = train_test_split(X_data, y_data, test_size=0.33, random_state=42)
svr_rbf = SVC(kernel= 'rbf', C= 1.0)
svr_rbf.fit(X_train, y_train)
plt.plot(X_data_distance, svr_rbf.predict(X_data), color= 'red', label= 'RBF model')
For the plot, I'm getting the following:
I have tried various parameter tuning, changing the parameter C, gamma even tried different kernels, but nothing changes the accuracy. Even tried SVR, Logistic regression instead of SVC, but nothing helps. I tried different scaling for training input data like StandardScalar() and scale().
I used this as a reference
What should I do?
As a rule of thumb, we usually follow this convention:
For little number of features, go with Logistic Regression.
For a lot of features but not a lot of data, go with SVM.
For a lot of features and a lot of data, go with Neural Network.
Because your dataset is a 10K cases, it'd be better to use Logistic Regression because SVM will take forever to finish!.
Nevertheless, because your dataset contains a lot of classes, there is a chance of classes imbalance in your implementation. Thus I tried to workaround this problem via using the StratifiedKFold instead of train_test_split which doesn't guarantee balanced classes in the splits.
Moreover, I used GridSearchCV with StratifiedKFold to perform Cross-Validation in order to tune the parameters and try all different optimizers!
So the full implementation is as follows:
import pandas as pd
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
from sklearn.model_selection import GridSearchCV, StratifiedKFold, StratifiedShuffleSplit
import numpy as np
def getDataset(path, x_attr, y_attr):
"""
Extract dataset from CSV file
:param path: location of csv file
:param x_attr: list of Features Names
:param y_attr: Y header name in CSV file
:return: tuple, (X, Y)
"""
df = pd.read_csv(path)
X = X = np.array(df[x_attr]).reshape(len(df), len(x_attr))
Y = np.array(df[y_attr])
return X, Y
def stratifiedSplit(X, Y):
sss = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=0)
train_index, test_index = next(sss.split(X, Y))
X_train, X_test = X[train_index], X[test_index]
Y_train, Y_test = Y[train_index], Y[test_index]
return X_train, X_test, Y_train, Y_test
def run(X_data, Y_data):
X_train, X_test, Y_train, Y_test = stratifiedSplit(X_data, Y_data)
param_grid = {'C': [0.01, 0.1, 1, 10, 100, 1000], 'penalty': ['l1', 'l2'],
'solver':['newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga']}
model = LogisticRegression(random_state=0)
clf = GridSearchCV(model, param_grid, cv=StratifiedKFold(n_splits=10))
clf.fit(X_train, Y_train)
print(accuracy_score(Y_train, clf.best_estimator_.predict(X_train)))
print(accuracy_score(Y_test, clf.best_estimator_.predict(X_test)))
X_data, Y_data = getDataset("data - Sheet1.csv", ['distance'], 'orders')
run(X_data, Y_data)
Despite all the attempts with all different algorithms, the accuracy didn't exceed 36%!!.
Why is that?
If you want to make a person recognize/classify another person by their T-shirt color, you cannot say: hey if it's red that means he's John and if it's red it's Peter but if it's red it's Aisling!! He would say "really, what the hack is the difference"?!!.
And that's exactly what is in your dataset!
Simply, run print(len(np.unique(X_data))) and print(len(np.unique(Y_data))) and you'll find that the numbers are so weird, in a nutshell you have:
Number of Cases: 10000 !!
Number of Classes: 118 !!
Number of Unique Inputs (i.e. Features): 66 !!
All classes are sharing hell a lot of information which make it impressive to have even up to 36% accuracy!
In other words, you have no informative features which lead to a lack in the uniqueness of each class model!
What to do?
I believe you are not allowed to remove some classes, so the only two solutions you have are:
Either live with this very valid result.
Or add more informative feature(s).
Update
Having you provided same dataset but with more features (i.e. complete set of features), the situation now is different.
I recommend you do the following:
Pre-process your dataset (i.e. prepare it by imputing missing values or deleting rows containing missing values, and converting dates to some unique values (example) ...etc).
Check what features are most important to the Orders Classes, you can achieve that by using of Forests of Trees to evaluate the importance of features. Here is a complete and simple example of how to do that in Scikit-Learn.
Create a new version of the dataset but this time hold Orders as the Y response, and the above-found features as the X variables.
Follow the same GrdiSearchCV and StratifiedKFold procedure that I showed you in the implementation above.
Hint
As per mentioned by Vivek Kumar in the comment below, stratify parameter has been added in Scikit-learn update to the train_test_split function.
It works by passing the array-like ground truth, so you don't need my workaround in the function stratifiedSplit(X, Y) above.

Python - Custom Sampling to get training and testing data

I have a highly unbalanced dataset.
My dataset contains 1450 records and my outputs are binary 0 and 1. Output 0 has 1200 records and the 1 has 250 records.
I am using this piece of code to build my testing and training data set for the model.
from sklearn.cross_validation import train_test_split
X = Actual_DataFrame
y = Actual_DataFrame.pop('Attrition')
X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.20, random_state=42, stratify=y)
But what I would like is a way through a function in which I want to specify the number of records for training and how much percent of them needs to come from class '0' and how much percent of them needs to come from class '1'.
So, a function which takes 2 Inputs are needed for creating the training_data:-
Total Number of Records for Training Data,
Number of Records that belongs to Class '1'
This would be a huge help to solve biased sampling dataset problems.
You can simply write a function that's very similar to the train_test_split from sklearn. The idea is that, from the input parameters train_size and pos_class_size, you can calculate how many positive class sample and negative class sample you will need.
def custom_split(X, y, train_size, pos_class_size, random_state=42):
neg_class_size = train_size = pos_class_size
pos_df = X[y == 1]
neg_df = X[y == 0]
pos_train = pos_df.sample(pos_class_size)
pos_test = pos_df[~pos_df.index.isin(pos_train.index)]
neg_train = neg_df.sample(neg_class_size)
neg_test = neg_df[~neg_df.index.isin(neg_train.index)]
X_train = pd.concat([pos_train,neg_train], axis=1)
X_test = pd.concat([pos_test,neg_test], axis=1)
y_train = y[X_train.index]
y_test = y[X_test.index]
return X_train, X_test, y_train, y_test
There are methods that are memory efficient or runs quicker, I didn't do any test with this code, but it should work.
At least, you should be able to get the idea behind.

Resources