I am just trying to up my understanding of plotting Pandas Series data using Booleans to mask out values I don't want. I am not sure that what I have is the correct or efficient way to do it.
Don't get me wrong, I do get the chart I am after but are my assumptions on the syntax correct?
All I want to do is plot the non zero values on my chart. I have not formatted the charts as I would normally as this was just a test of Booleans and masking data and not for creating report grade charts.
If I masked this as a Pandas DataFrame I would do the following if df1 were my DataFrame.
I understand this and it makes sense that the df1[mask] returns my values as required
# Plot our graph with only items that are non-zero
fig = px.bar(df1[mask], x = 'Animals', y = 'Count')
fig.show()
Doing it as a Pandas Series
This is the snippet that creates the graph I require
# Plot our graph with only items that are non-zero
fig = px.bar(sf, x = sf.index[sf_mask], y = sf[sf_mask])
fig.show()
After my initial test with adding my mask to sf and getting an error. I deduced that I needed to add the mask against the x and y parameters. I take it this is because a Series is just a single column and the index is set as my "animals". Therefore by mapping the sf.index[sf_mask] I get the returned animals in the index and sf[sf_mask] returns me the values. failure to add either one would give a "ValueError" stating that the arguments should have the same length.
Here is what I did to test my workings
My initial imports and setting up Plotly as my plotting backend
import pandas as pd
import plotly.express as px
# Set our plotting backend to Plotly
pd.options.plotting.backend = "plotly"
I just created a test dataset from a dictionary
animals = {'rabbits' : 1,
'dogs' : 3,
'cats' : 0,
'ferrets' : 3,
'horses' : 8,
'goldfish' : 0,
'guinea_pigs' : 2,
'hamsters' : 6,
'mice' : 3,
'rats' : 0
}
Then converted it to a pandas Series
sf = pd.Series(animals)
I then create my boolean mask to mask out all our non-Zero entries on our Pandas Series
sf_mask = sf != 0
And if I then view the mask I can see I only get non zero values which is exactly what I am looking for.
sf[sf_mask]
Which outputs my non-zero items in my series.
rabbits 1
dogs 3
ferrets 3
horses 8
guinea_pigs 2
hamsters 6
mice 3
dtype: int64
If I plot without my Boolean mask 'sf_mask' using the following syntax I get my complete Pandas Series charted
# Plot our Series showing all items
fig = px.bar(sf, x = sf.index, y = sf)
fig.show()
Which outputs the following chart
If I plot with my Boolean mask 'sf_mask' using the following syntax I get the chart I want which excludes the gaps with zero value items.
# Plot our graph with only items that are non-zero
fig = px.bar(sf, x = sf.index[sf_mask], y = sf[sf_mask])
fig.show()
Which outputs the correct chart.
Your understanding of booleans and masking is correct.
You can simplify your syntax a little though: if you take a look at the plotly.express.bar documentation, you'll see that the arguments 'x' and 'y' are optional. You don't need to pass 'x' or 'y' because by default plotly.express will create the bars using the index of the Series as x and the values of the Series as y. You can also pass the masked series in place of the entire series.
For example, this will produce the same bar chart:
fig = px.bar(sf[sf>0])
fig.update_layout(showlegend=False)
Related
I have the following data sets (only sample is shown):
I want to find the most impactful exercise per area and then plot it via Seaborn barplot.
I use the following code to do so.
# Create Dataset Using Only Area, Exercise and Impact Level Chategories
CA_data = Data[['area', 'exercise', 'impact level']]
# Compute Mean Impact Level per Exercise per Area
mean_il_CA = CA_data.groupby(['area', 'exercise'])['impact level'].mean().reset_index()
mean_il_CA_hello = mean_il_CA.groupby('area')['impact level'].max().reset_index()
# Plot
cx = sns.barplot(x="impact level", y="area", data=mean_il_CA_hello)
plt.title('Most Impactful Exercises Considering Area')
plt.show()
The resulting dataset is:
This means that when I plot, on the y axis only the label relative to the area appears, NOT 'area label' + 'exercise label' like I would like.
How do I reinsert 'exercise column into my final dataset?
How do I get both the name of the area and the exercise on the y plot?
The problem of losing the values of 'exercise' when grouping by the maximum of 'area' can be solved by keeping the MultiIndex (i.e. not using reset_index) and using .transform to create a boolean mask to select the appropriate full rows of mean_il_CA that contain the maximum 'impact_level' values per 'area'. This solution is based on the code provided in this answer by unutbu. The full labels for the bar chart can be created by concatenating the labels of 'area' and 'exercise'.
Here is an example using the titanic dataset from the seaborn package. The variables 'class', 'embark_town', and 'fare' are used in place of 'area', 'exercise', and 'impact_level'. The categorical variables both contain three unique values: 'First', 'Second', 'Third', and 'Cherbourg', 'Queenstown', 'Southampton'.
import pandas as pd # v 1.2.5
import seaborn as sns # v 0.11.1
df = sns.load_dataset('titanic')
data = df[['class', 'embark_town', 'fare']]
data.head()
data_mean = data.groupby(['class', 'embark_town'])['fare'].mean()
data_mean
# Select max values in each class and create concatenated labels
mask_max = data_mean.groupby(level=0).transform(lambda x: x == x.max())
data_mean_max = data_mean[mask_max].reset_index()
data_mean_max['class, embark_town'] = data_mean_max['class'].astype(str) + ', ' \
+ data_mean_max['embark_town']
data_mean_max
# Draw seaborn bar chart
sns.barplot(data=data_mean_max,
x=data_mean_max['fare'],
y=data_mean_max['class, embark_town'])
I'm trying to be able to control the colour of an individual data point using a corresponding rgb tuple. I've tried looping through the data set and plotting individual data points however I get the same effect as the code I have below; all that happens is it refuses to produce a graph.
This is an example of the data type I'm working with
Any tips?
import matplotlib.pyplot as plt
y=[(0.200,0.1100,0.520)]
for i in range(4):
y.append(y)
plt.plot([1,2,3,4], [3,4,5,2],c=y)
plt.show()
One problem is that you are appending the list to the new list. Instead, try appending the tuple to the list. Moreover, you need to use scatter plot for the color argument which contains rgb tuple for each point. However, in oyur case, I see only a single color for all the scatter points.
tup=(0.200,0.1100,0.520)
y = []
for i in range(4):
y.append(tup)
plt.scatter([1,2,3,4], [3,4,5,2], c=y)
A rather short version to your code is using a list comprehension
tup=(0.200,0.1100,0.520)
y = [tup for _ in range(4)]
plt.scatter([1,2,3,4], [3,4,5,2], c=y)
I have a data set I filtered to the following (sample data):
Name Time l
1 1.129 1G-d
1 0.113 1G-a
1 3.374 1B-b
1 3.367 1B-c
1 3.374 1B-d
2 3.355 1B-e
2 3.361 1B-a
3 1.129 1G-a
I got this data after filtering the data frame and converting it to CSV file:
# Assigns the new data frame to "df" with the data from only three columns
header = ['Names','Time','l']
df = pd.DataFrame(df_2, columns = header)
# Sorts the data frame by column "Names" as integers
df.Names = df.Names.astype(int)
df = df.sort_values(by=['Names'])
# Changes the data to match format after converting it to int
df.Time=df.Time.astype(int)
df.Time = df.Time/1000
csv_file = df.to_csv(index=False, columns=header, sep=" " )
Now, I am trying to graph lines for each label column data/items with markers.
I want the column l as my line names (labels) - each as a new line, Time as my Y-axis values and Names as my X-axis values.
So, in this case, I would have 7 different lines in the graph with these labels: 1G-d, 1G-a, 1B-b, 1B-c, 1B-d, 1B-e, 1B-a.
I have done the following so far which is the additional settings, but I am not sure how to graph the lines.
plt.xlim(0, 60)
plt.ylim(0, 18)
plt.legend(loc='best')
plt.show()
I used sns.lineplot which comes with hue and I do not want to have name for the label box. Also, in that case, I cannot have the markers without adding new column for style.
I also tried ply.plot but in that case, I am not sure how to have more lines. I can only give x and y values which create only one line.
If there's any other source, please let me know below.
Thanks
The final graph I want to have is like the following but with markers:
You can apply a few tweaks to seaborn's lineplot. Using some created data since your sample isn't really long enough to demonstrate:
# Create data
np.random.seed(2019)
categories = ['1G-d', '1G-a', '1B-b', '1B-c', '1B-d', '1B-e', '1B-a']
df = pd.DataFrame({'Name':np.repeat(range(1,11), 10),
'Time':np.random.randn(100).cumsum(),
'l':np.random.choice(categories, 100)
})
# Plot
sns.lineplot(data=df, x='Name', y='Time', hue='l', style='l', dashes=False,
markers=True, ci=None, err_style=None)
# Temporarily removing limits based on sample data
#plt.xlim(0, 60)
#plt.ylim(0, 18)
# Remove seaborn legend title & set new title (if desired)
ax = plt.gca()
handles, labels = ax.get_legend_handles_labels()
ax.legend(handles=handles[1:], labels=labels[1:], title='New Title', loc='best')
plt.show()
To apply markers, you have to specify a style variable. This can be the same as hue.
You likely want to remove dashes, ci, and err_style
To remove the seaborn legend title, you can get the handles and labels, then re-add the legend without the first handle and label. You can also specify the location here and set a new title if desired (or just remove title=... for no title).
Edits per comments:
Filtering your data to only a subset of level categories can be done fairly easily via:
categories = ['1G-d', '1G-a', '1B-b', '1B-c', '1B-d', '1B-e', '1B-a']
df = df.loc[df['l'].isin(categories)]
markers=True will fail if there are too many levels. If you are only interested in marking points for aesthetic purposes, you can simply multiply a single marker by the number of categories you are interested in (which you have already created to filter your data to categories of interest): markers='o'*len(categories).
Alternatively, you can specify a custom dictionary to pass to the markers argument:
points = ['o', '*', 'v', '^']
mult = len(categories) // len(points) + (len(categories) % len(points) > 0)
markers = {key:value for (key, value)
in zip(categories, points * mult)}
This will return a dictionary of category-point combinations, cycling over the marker points specified until each item in categories has a point style.
I am a beginner in Python (using Python 3.7 in Spyder 3.3.2 and Anaconda Navigator 1.9.6). I have no problem creating seaborn violin plots, but the moment I try to Facetgrid them I run into issues. I tried using catplot.
Here is my violin plot code (it works):
# Libraries
import seaborn as sns
import pandas as pd
import os # Imports `os`
from matplotlib import pyplot as plt
os.chdir(r"XXXXXX") # Changes directory
os.listdir('.') # Lists all files and directories in current directory
## Data set
File = 'test_eventcountratios.xlsx' # Assigns Excel filename to File
df = pd.read_excel(File)
ax = sns.violinplot(x = df["Timepoint"], y = df["Macrophage Frequency"], palette = "Blues")
ax.set_xticklabels(ax.get_xticklabels(),rotation=30)
My data is long form, so all timepoints are in the first column and "Macrophage Frequency" data are in the second column. All remaining columns represent other cell types. Here is a screenshot of my data spreadsheet
Here is my catplot code (it doesn't work):
g=sns.catplot(data=df, x="Timepoint", y=df["B cell Frequency","Neutrophil Frequency","NK cell Frequency","Macrophage Frequency"],
palette = "Blues",
kind = "violin", split=True)
I get "Key Error: ('B cell Frequency', 'Neutrophil Frequency', 'NK cell Frequency', 'Macrophage Frequency')"
I don't even want to call on each column individually. I would like the code to run through each column (cell type) to gather data and put each column's data into it's own plot.
I stripped the catplot code to basics to see if that worked:
g=sns.catplot(x = df["Timepoint"], y = df["Macrophage Frequency"], palette = "Blues", data=df, kind="violin")
It works and produces a violin plot, but with this error: "ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all()."
So...
I want to make a grid of multiple violin plots (Timepoint on X axis, Cell type frequency on Y axis), where each plot takes data from each column. Why am I only successful when I limit my "y" to a single column from my dataframe?
I've Googled all of my errors, but I can't seem to make the right changes to my code. If I change one thing, then I get a new error (like "TypeError: object of type 'NonType' has no len()", "ValueError: num must be 1 <= num <= 0, not 1", etc)
Use this:
g = sns.catplot(x = "Timepoint", y = "Macrophage Frequency", palette = "Blues", data=df, kind="violin")
x and y is simply the column name in df.
My data-frame contains the following column headers: subject, Group, MASQ_GDA, MASQ_AA, MASQ_GDD, MASQ_AD
I was successfully able to plot one of them using a bar plot with the following specifications:
bar_plot = sns.barplot(x="Group", y='MASQ_GDA', units="subject", ci = 68, hue="Group", data=demo_masq)
However, I am attempting to create several of such bar plot side by side. Might anyone know how I can accomplish this, for each plot to contain the remaining 3 variables (MASQ_AA, MASQ_GDD, MASQ_AD). Here is an example of what I am trying to achieve.
If you look in the documentation for sns.barplot(), you will see that the function accepts a parameter ax= allowing you to tell seaborn which Axes object to use to plot the result
ax : matplotlib Axes, optional
Axes object to draw the plot onto, otherwise uses the current Axes.
Therefore, the simple way to obtain the desired output is to create the Axes beforehand, and then calling sns.barplot() with the corresponding ax parameter
fig, axs = plt.subplots(1,4) # create 4 subplots on 1 row
for ax,col in zip(axs,["MASQ_GDA", "MASQ_AA", "MASQ_GDD", "MASQ_AD"]):
sns.barplot(x="Group", y=col, units="subject", ci = 68, hue="Group", data=demo_masq, ax=ax) # <- notice ax= argument
Another option, and maybe an option that is more in line with the philosophy of seaborn is to use a FacetGrid. This would allow you to automatically create the required number of subplots depending on the number of categories in your dataset. However, it requires to reshape your dataframe so that the content of your MASQ_* columns are on a single column, with a new column showing what category each value corresponds to.