How to find the average amount of time somebody won a race by Python Pandas - python-3.x

So, as seen in the dataframe, there's 3 races. I want to find the time difference between 1st and second place for each race, then the output would be the average that each runner would win each race by.
import pandas as pd
# initialise data of lists.
data = {'Name':['A', 'B', 'B', 'C', 'A', 'C'], 'RaceNumber':
[1, 1, 2, 2, 3, 3], 'PlaceWon':['First', 'Second', 'First', 'Second', 'First', 'Second'], 'TimeRanInSec':[100, 98, 66, 60, 75, 70]}
# Create DataFrame
df = pd.DataFrame(data)
# Print the output.
print(df)
In this case, The output would be a data frame that outputs A won races by an average of 3.5 sec. B won by an average of 6 sec.
I imagine this could be done by grouping by RaceNumber and then subtracting TimeRanInSec. But unsure how to get the average of each Name.

I think you need two groupby operations, one to get the winning margin for each race, and then one to get the average winning margin for each person.
For a general solution, I would first define a function that calculates the winning margin from a list of times (for one race). Then you can apply that function to the times in each race group and join the resulting winning margins to the dataframe of all the winners. Then it's easy to get the desired averages:
def winning_margin(times):
times = list(times)
winner = min(times)
times.remove(winner)
return min(times) - winner
winning_margins = df[['RaceNumber', 'TimeRanInSec']] \
.groupby('RaceNumber').agg(winning_margin)
winning_margins.columns = ['margin']
winners = df.loc[df.PlaceWon == 'First', :]
winners = winners.join(winning_margins, on='RaceNumber')
avg_margins = winners[['Name', 'margin']].groupby('Name').mean()
avg_margins
margin
Name
A 3.5
B 6.0

Related

column comprehension robust to missing values

I have only been able to create a two column data frame from a defaultdict (termed output):
df_mydata = pd.DataFrame([(k, v) for k, v in output.items()],
columns=['id', 'value'])
What I would like to be able to do is using this basic format also initiate the dataframe with three columns: 'id', 'id2' and 'value'. I have a separate defined dict that contains the necessary look up info, called id_lookup.
So I tried:
df_mydata = pd.DataFrame([(k, id_lookup[k], v) for k, v in output.items()],
columns=['id', 'id2','value'])
I think I'm doing it right, but I get key errors. I will only know if id_lookup is exhaustive for all possible encounters in hindsight. For my purposes, simply putting it all together and placing 'N/A` or something for those types of errors will be acceptable.
Would the above be appropriate for calculating a new column of data using a defaultdict and a simple lookup dict, and how might I make it robust to key errors?
Here is an example of how you could do this:
import pandas as pd
from collections import defaultdict
df = pd.DataFrame({'id': [1, 2, 3, 4],
'value': [10, 20, 30, 40]})
id_lookup = {1: 'A', 2: 'B', 3: 'C'}
new_column = defaultdict(str)
# Loop through the df and populate the defaultdict
for index, row in df.iterrows():
try:
new_column[index] = id_lookup[row['id']]
except KeyError:
new_column[index] = 'N/A'
# Convert the defaultdict to a Series and add it as a new column in the df
df['id2'] = pd.Series(new_column)
# Print the updated DataFrame
print(df)
which gives:
id value id2
0 1 10 A
1 2 20 B
2 3 30 C
3 4 40 N/A
​

Change a dataframe column value based on the current value?

I have a pandas dataframe with several columns and in one of them, there are string values. I need to change these strings to an acceptable value based on the current value. The dataframe is relatively large (40.000 x 32)
I've made a small function that takes the string to be changed as a parameter and then lookup what this should be changed to.
df = pd.DataFrame({
'A': ['Script','Scrpt','MyScript','Sunday','Monday','qwerty'],
'B': ['Song','Blues','Rock','Classic','Whatever','Something']})
def lut(txt):
my_lut = {'Script' : ['Script','Scrpt','MyScript'],
'Weekday' : ['Sunday','Monday','Tuesday']}
for key, value in my_lut.items():
if txt in value:
return(key)
break
return('Unknown')
The desired output should be:
A B
0 Script Song
1 Script Blues
2 Script Rock
3 Weekday Classic
4 Weekday Whatever
5 Unknown Something
I can't figure out how to apply this to the dataframe.
I've struggled over this for some time now so any input will be appreciated
Regards,
Check this out:
import pandas as pd
df = pd.DataFrame({
'A': ['Script','Scrpt','MyScript','Sunday','sdfsd','qwerty'],
'B': ['Song','Blues','Rock','Classic','Whatever','Something']})
dic = {'Weekday': ['Sunday', 'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday'], 'Script': ['Script','Scrpt','MyScript']}
for k, v in dic.items():
for item in v:
df.loc[df.A == item, 'A'] = k
df.loc[~df.A.isin(k for k, v in dic.items()), 'A'] = "Unknown"
Output:

Probabilistic random selection [duplicate]

I needed to write a weighted version of random.choice (each element in the list has a different probability for being selected). This is what I came up with:
def weightedChoice(choices):
"""Like random.choice, but each element can have a different chance of
being selected.
choices can be any iterable containing iterables with two items each.
Technically, they can have more than two items, the rest will just be
ignored. The first item is the thing being chosen, the second item is
its weight. The weights can be any numeric values, what matters is the
relative differences between them.
"""
space = {}
current = 0
for choice, weight in choices:
if weight > 0:
space[current] = choice
current += weight
rand = random.uniform(0, current)
for key in sorted(space.keys() + [current]):
if rand < key:
return choice
choice = space[key]
return None
This function seems overly complex to me, and ugly. I'm hoping everyone here can offer some suggestions on improving it or alternate ways of doing this. Efficiency isn't as important to me as code cleanliness and readability.
Since version 1.7.0, NumPy has a choice function that supports probability distributions.
from numpy.random import choice
draw = choice(list_of_candidates, number_of_items_to_pick,
p=probability_distribution)
Note that probability_distribution is a sequence in the same order of list_of_candidates. You can also use the keyword replace=False to change the behavior so that drawn items are not replaced.
Since Python 3.6 there is a method choices from the random module.
In [1]: import random
In [2]: random.choices(
...: population=[['a','b'], ['b','a'], ['c','b']],
...: weights=[0.2, 0.2, 0.6],
...: k=10
...: )
Out[2]:
[['c', 'b'],
['c', 'b'],
['b', 'a'],
['c', 'b'],
['c', 'b'],
['b', 'a'],
['c', 'b'],
['b', 'a'],
['c', 'b'],
['c', 'b']]
Note that random.choices will sample with replacement, per the docs:
Return a k sized list of elements chosen from the population with replacement.
Note for completeness of answer:
When a sampling unit is drawn from a finite population and is returned
to that population, after its characteristic(s) have been recorded,
before the next unit is drawn, the sampling is said to be "with
replacement". It basically means each element may be chosen more than
once.
If you need to sample without replacement, then as #ronan-paixão's brilliant answer states, you can use numpy.choice, whose replace argument controls such behaviour.
def weighted_choice(choices):
total = sum(w for c, w in choices)
r = random.uniform(0, total)
upto = 0
for c, w in choices:
if upto + w >= r:
return c
upto += w
assert False, "Shouldn't get here"
Arrange the weights into a
cumulative distribution.
Use random.random() to pick a random
float 0.0 <= x < total.
Search the
distribution using bisect.bisect as
shown in the example at http://docs.python.org/dev/library/bisect.html#other-examples.
from random import random
from bisect import bisect
def weighted_choice(choices):
values, weights = zip(*choices)
total = 0
cum_weights = []
for w in weights:
total += w
cum_weights.append(total)
x = random() * total
i = bisect(cum_weights, x)
return values[i]
>>> weighted_choice([("WHITE",90), ("RED",8), ("GREEN",2)])
'WHITE'
If you need to make more than one choice, split this into two functions, one to build the cumulative weights and another to bisect to a random point.
If you don't mind using numpy, you can use numpy.random.choice.
For example:
import numpy
items = [["item1", 0.2], ["item2", 0.3], ["item3", 0.45], ["item4", 0.05]
elems = [i[0] for i in items]
probs = [i[1] for i in items]
trials = 1000
results = [0] * len(items)
for i in range(trials):
res = numpy.random.choice(items, p=probs) #This is where the item is selected!
results[items.index(res)] += 1
results = [r / float(trials) for r in results]
print "item\texpected\tactual"
for i in range(len(probs)):
print "%s\t%0.4f\t%0.4f" % (items[i], probs[i], results[i])
If you know how many selections you need to make in advance, you can do it without a loop like this:
numpy.random.choice(items, trials, p=probs)
As of Python v3.6, random.choices could be used to return a list of elements of specified size from the given population with optional weights.
random.choices(population, weights=None, *, cum_weights=None, k=1)
population : list containing unique observations. (If empty, raises IndexError)
weights : More precisely relative weights required to make selections.
cum_weights : cumulative weights required to make selections.
k : size(len) of the list to be outputted. (Default len()=1)
Few Caveats:
1) It makes use of weighted sampling with replacement so the drawn items would be later replaced. The values in the weights sequence in itself do not matter, but their relative ratio does.
Unlike np.random.choice which can only take on probabilities as weights and also which must ensure summation of individual probabilities upto 1 criteria, there are no such regulations here. As long as they belong to numeric types (int/float/fraction except Decimal type) , these would still perform.
>>> import random
# weights being integers
>>> random.choices(["white", "green", "red"], [12, 12, 4], k=10)
['green', 'red', 'green', 'white', 'white', 'white', 'green', 'white', 'red', 'white']
# weights being floats
>>> random.choices(["white", "green", "red"], [.12, .12, .04], k=10)
['white', 'white', 'green', 'green', 'red', 'red', 'white', 'green', 'white', 'green']
# weights being fractions
>>> random.choices(["white", "green", "red"], [12/100, 12/100, 4/100], k=10)
['green', 'green', 'white', 'red', 'green', 'red', 'white', 'green', 'green', 'green']
2) If neither weights nor cum_weights are specified, selections are made with equal probability. If a weights sequence is supplied, it must be the same length as the population sequence.
Specifying both weights and cum_weights raises a TypeError.
>>> random.choices(["white", "green", "red"], k=10)
['white', 'white', 'green', 'red', 'red', 'red', 'white', 'white', 'white', 'green']
3) cum_weights are typically a result of itertools.accumulate function which are really handy in such situations.
From the documentation linked:
Internally, the relative weights are converted to cumulative weights
before making selections, so supplying the cumulative weights saves
work.
So, either supplying weights=[12, 12, 4] or cum_weights=[12, 24, 28] for our contrived case produces the same outcome and the latter seems to be more faster / efficient.
Crude, but may be sufficient:
import random
weighted_choice = lambda s : random.choice(sum(([v]*wt for v,wt in s),[]))
Does it work?
# define choices and relative weights
choices = [("WHITE",90), ("RED",8), ("GREEN",2)]
# initialize tally dict
tally = dict.fromkeys(choices, 0)
# tally up 1000 weighted choices
for i in xrange(1000):
tally[weighted_choice(choices)] += 1
print tally.items()
Prints:
[('WHITE', 904), ('GREEN', 22), ('RED', 74)]
Assumes that all weights are integers. They don't have to add up to 100, I just did that to make the test results easier to interpret. (If weights are floating point numbers, multiply them all by 10 repeatedly until all weights >= 1.)
weights = [.6, .2, .001, .199]
while any(w < 1.0 for w in weights):
weights = [w*10 for w in weights]
weights = map(int, weights)
If you have a weighted dictionary instead of a list you can write this
items = { "a": 10, "b": 5, "c": 1 }
random.choice([k for k in items for dummy in range(items[k])])
Note that [k for k in items for dummy in range(items[k])] produces this list ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'c', 'b', 'b', 'b', 'b', 'b']
Here's is the version that is being included in the standard library for Python 3.6:
import itertools as _itertools
import bisect as _bisect
class Random36(random.Random):
"Show the code included in the Python 3.6 version of the Random class"
def choices(self, population, weights=None, *, cum_weights=None, k=1):
"""Return a k sized list of population elements chosen with replacement.
If the relative weights or cumulative weights are not specified,
the selections are made with equal probability.
"""
random = self.random
if cum_weights is None:
if weights is None:
_int = int
total = len(population)
return [population[_int(random() * total)] for i in range(k)]
cum_weights = list(_itertools.accumulate(weights))
elif weights is not None:
raise TypeError('Cannot specify both weights and cumulative weights')
if len(cum_weights) != len(population):
raise ValueError('The number of weights does not match the population')
bisect = _bisect.bisect
total = cum_weights[-1]
return [population[bisect(cum_weights, random() * total)] for i in range(k)]
Source: https://hg.python.org/cpython/file/tip/Lib/random.py#l340
A very basic and easy approach for a weighted choice is the following:
np.random.choice(['A', 'B', 'C'], p=[0.3, 0.4, 0.3])
import numpy as np
w=np.array([ 0.4, 0.8, 1.6, 0.8, 0.4])
np.random.choice(w, p=w/sum(w))
I'm probably too late to contribute anything useful, but here's a simple, short, and very efficient snippet:
def choose_index(probabilies):
cmf = probabilies[0]
choice = random.random()
for k in xrange(len(probabilies)):
if choice <= cmf:
return k
else:
cmf += probabilies[k+1]
No need to sort your probabilities or create a vector with your cmf, and it terminates once it finds its choice. Memory: O(1), time: O(N), with average running time ~ N/2.
If you have weights, simply add one line:
def choose_index(weights):
probabilities = weights / sum(weights)
cmf = probabilies[0]
choice = random.random()
for k in xrange(len(probabilies)):
if choice <= cmf:
return k
else:
cmf += probabilies[k+1]
If your list of weighted choices is relatively static, and you want frequent sampling, you can do one O(N) preprocessing step, and then do the selection in O(1), using the functions in this related answer.
# run only when `choices` changes.
preprocessed_data = prep(weight for _,weight in choices)
# O(1) selection
value = choices[sample(preprocessed_data)][0]
If you happen to have Python 3, and are afraid of installing numpy or writing your own loops, you could do:
import itertools, bisect, random
def weighted_choice(choices):
weights = list(zip(*choices))[1]
return choices[bisect.bisect(list(itertools.accumulate(weights)),
random.uniform(0, sum(weights)))][0]
Because you can build anything out of a bag of plumbing adaptors! Although... I must admit that Ned's answer, while slightly longer, is easier to understand.
I looked the pointed other thread and came up with this variation in my coding style, this returns the index of choice for purpose of tallying, but it is simple to return the string ( commented return alternative):
import random
import bisect
try:
range = xrange
except:
pass
def weighted_choice(choices):
total, cumulative = 0, []
for c,w in choices:
total += w
cumulative.append((total, c))
r = random.uniform(0, total)
# return index
return bisect.bisect(cumulative, (r,))
# return item string
#return choices[bisect.bisect(cumulative, (r,))][0]
# define choices and relative weights
choices = [("WHITE",90), ("RED",8), ("GREEN",2)]
tally = [0 for item in choices]
n = 100000
# tally up n weighted choices
for i in range(n):
tally[weighted_choice(choices)] += 1
print([t/sum(tally)*100 for t in tally])
A general solution:
import random
def weighted_choice(choices, weights):
total = sum(weights)
treshold = random.uniform(0, total)
for k, weight in enumerate(weights):
total -= weight
if total < treshold:
return choices[k]
Here is another version of weighted_choice that uses numpy. Pass in the weights vector and it will return an array of 0's containing a 1 indicating which bin was chosen. The code defaults to just making a single draw but you can pass in the number of draws to be made and the counts per bin drawn will be returned.
If the weights vector does not sum to 1, it will be normalized so that it does.
import numpy as np
def weighted_choice(weights, n=1):
if np.sum(weights)!=1:
weights = weights/np.sum(weights)
draws = np.random.random_sample(size=n)
weights = np.cumsum(weights)
weights = np.insert(weights,0,0.0)
counts = np.histogram(draws, bins=weights)
return(counts[0])
It depends on how many times you want to sample the distribution.
Suppose you want to sample the distribution K times. Then, the time complexity using np.random.choice() each time is O(K(n + log(n))) when n is the number of items in the distribution.
In my case, I needed to sample the same distribution multiple times of the order of 10^3 where n is of the order of 10^6. I used the below code, which precomputes the cumulative distribution and samples it in O(log(n)). Overall time complexity is O(n+K*log(n)).
import numpy as np
n,k = 10**6,10**3
# Create dummy distribution
a = np.array([i+1 for i in range(n)])
p = np.array([1.0/n]*n)
cfd = p.cumsum()
for _ in range(k):
x = np.random.uniform()
idx = cfd.searchsorted(x, side='right')
sampled_element = a[idx]
There is lecture on this by Sebastien Thurn in the free Udacity course AI for Robotics. Basically he makes a circular array of the indexed weights using the mod operator %, sets a variable beta to 0, randomly chooses an index,
for loops through N where N is the number of indices and in the for loop firstly increments beta by the formula:
beta = beta + uniform sample from {0...2* Weight_max}
and then nested in the for loop, a while loop per below:
while w[index] < beta:
beta = beta - w[index]
index = index + 1
select p[index]
Then on to the next index to resample based on the probabilities (or normalized probability in the case presented in the course).
On Udacity find Lesson 8, video number 21 of Artificial Intelligence for Robotics where he is lecturing on particle filters.
Another way of doing this, assuming we have weights at the same index as the elements in the element array.
import numpy as np
weights = [0.1, 0.3, 0.5] #weights for the item at index 0,1,2
# sum of weights should be <=1, you can also divide each weight by sum of all weights to standardise it to <=1 constraint.
trials = 1 #number of trials
num_item = 1 #number of items that can be picked in each trial
selected_item_arr = np.random.multinomial(num_item, weights, trials)
# gives number of times an item was selected at a particular index
# this assumes selection with replacement
# one possible output
# selected_item_arr
# array([[0, 0, 1]])
# say if trials = 5, the the possible output could be
# selected_item_arr
# array([[1, 0, 0],
# [0, 0, 1],
# [0, 0, 1],
# [0, 1, 0],
# [0, 0, 1]])
Now let's assume, we have to sample out 3 items in 1 trial. You can assume that there are three balls R,G,B present in large quantity in ratio of their weights given by weight array, the following could be possible outcome:
num_item = 3
trials = 1
selected_item_arr = np.random.multinomial(num_item, weights, trials)
# selected_item_arr can give output like :
# array([[1, 0, 2]])
you can also think number of items to be selected as number of binomial/ multinomial trials within a set. So, the above example can be still work as
num_binomial_trial = 5
weights = [0.1,0.9] #say an unfair coin weights for H/T
num_experiment_set = 1
selected_item_arr = np.random.multinomial(num_binomial_trial, weights, num_experiment_set)
# possible output
# selected_item_arr
# array([[1, 4]])
# i.e H came 1 time and T came 4 times in 5 binomial trials. And one set contains 5 binomial trails.
let's say you have
items = [11, 23, 43, 91]
probability = [0.2, 0.3, 0.4, 0.1]
and you have function which generates a random number between [0, 1) (we can use random.random() here).
so now take the prefix sum of probability
prefix_probability=[0.2,0.5,0.9,1]
now we can just take a random number between 0-1 and use binary search to find where that number belongs in prefix_probability. that index will be your answer
Code will go something like this
return items[bisect.bisect(prefix_probability,random.random())]
One way is to randomize on the total of all the weights and then use the values as the limit points for each var. Here is a crude implementation as a generator.
def rand_weighted(weights):
"""
Generator which uses the weights to generate a
weighted random values
"""
sum_weights = sum(weights.values())
cum_weights = {}
current_weight = 0
for key, value in sorted(weights.iteritems()):
current_weight += value
cum_weights[key] = current_weight
while True:
sel = int(random.uniform(0, 1) * sum_weights)
for key, value in sorted(cum_weights.iteritems()):
if sel < value:
break
yield key
Using numpy
def choice(items, weights):
return items[np.argmin((np.cumsum(weights) / sum(weights)) < np.random.rand())]
I needed to do something like this really fast really simple, from searching for ideas i finally built this template. The idea is receive the weighted values in a form of a json from the api, which here is simulated by the dict.
Then translate it into a list in which each value repeats proportionally to it's weight, and just use random.choice to select a value from the list.
I tried it running with 10, 100 and 1000 iterations. The distribution seems pretty solid.
def weighted_choice(weighted_dict):
"""Input example: dict(apples=60, oranges=30, pineapples=10)"""
weight_list = []
for key in weighted_dict.keys():
weight_list += [key] * weighted_dict[key]
return random.choice(weight_list)
I didn't love the syntax of any of those. I really wanted to just specify what the items were and what the weighting of each was. I realize I could have used random.choices but instead I quickly wrote the class below.
import random, string
from numpy import cumsum
class randomChoiceWithProportions:
'''
Accepts a dictionary of choices as keys and weights as values. Example if you want a unfair dice:
choiceWeightDic = {"1":0.16666666666666666, "2": 0.16666666666666666, "3": 0.16666666666666666
, "4": 0.16666666666666666, "5": .06666666666666666, "6": 0.26666666666666666}
dice = randomChoiceWithProportions(choiceWeightDic)
samples = []
for i in range(100000):
samples.append(dice.sample())
# Should be close to .26666
samples.count("6")/len(samples)
# Should be close to .16666
samples.count("1")/len(samples)
'''
def __init__(self, choiceWeightDic):
self.choiceWeightDic = choiceWeightDic
weightSum = sum(self.choiceWeightDic.values())
assert weightSum == 1, 'Weights sum to ' + str(weightSum) + ', not 1.'
self.valWeightDict = self._compute_valWeights()
def _compute_valWeights(self):
valWeights = list(cumsum(list(self.choiceWeightDic.values())))
valWeightDict = dict(zip(list(self.choiceWeightDic.keys()), valWeights))
return valWeightDict
def sample(self):
num = random.uniform(0,1)
for key, val in self.valWeightDict.items():
if val >= num:
return key
Provide random.choice() with a pre-weighted list:
Solution & Test:
import random
options = ['a', 'b', 'c', 'd']
weights = [1, 2, 5, 2]
weighted_options = [[opt]*wgt for opt, wgt in zip(options, weights)]
weighted_options = [opt for sublist in weighted_options for opt in sublist]
print(weighted_options)
# test
counts = {c: 0 for c in options}
for x in range(10000):
counts[random.choice(weighted_options)] += 1
for opt, wgt in zip(options, weights):
wgt_r = counts[opt] / 10000 * sum(weights)
print(opt, counts[opt], wgt, wgt_r)
Output:
['a', 'b', 'b', 'c', 'c', 'c', 'c', 'c', 'd', 'd']
a 1025 1 1.025
b 1948 2 1.948
c 5019 5 5.019
d 2008 2 2.008
In case you don't define in advance how many items you want to pick (so, you don't do something like k=10) and you just have probabilities, you can do the below. Note that your probabilities do not need to add up to 1, they can be independent of each other:
soup_items = ['pepper', 'onion', 'tomato', 'celery']
items_probability = [0.2, 0.3, 0.9, 0.1]
selected_items = [item for item,p in zip(soup_items,items_probability) if random.random()<p]
print(selected_items)
>>>['pepper','tomato']
Step-1: Generate CDF F in which you're interesting
Step-2: Generate u.r.v. u
Step-3: Evaluate z=F^{-1}(u)
This modeling is described in course of probability theory or stochastic processes. This is applicable just because you have easy CDF.

Python Pandas How to get rid of groupings with only 1 row?

In my dataset, I am trying to get the margin between two values. The code below runs perfectly if the fourth race was not included. After grouping based on a column, it seems that sometimes, there will be only 1 value, therefore, no other value to get a margin out of. I want to ignore these groupings in that case. Here is my current code:
import pandas as pd
data = {'Name':['A', 'B', 'B', 'C', 'A', 'C', 'A'], 'RaceNumber':
[1, 1, 2, 2, 3, 3, 4], 'PlaceWon':['First', 'Second', 'First', 'Second', 'First', 'Second', 'First'], 'TimeRanInSec':[100, 98, 66, 60, 75, 70, 75]}
df = pd.DataFrame(data)
print(df)
def winning_margin(times):
times = list(times)
winner = min(times)
times.remove(winner)
return min(times) - winner
winning_margins = df[['RaceNumber', 'TimeRanInSec']] \
.groupby('RaceNumber').agg(winning_margin)
winning_margins.columns = ['margin']
winners = df.loc[df.PlaceWon == 'First', :]
winners = winners.join(winning_margins, on='RaceNumber')
avg_margins = winners[['Name', 'margin']].groupby('Name').mean()
avg_margins
How about returning a NaN if times does not have enough elements:
import numpy as np
def winning_margin(times):
if len(times) <= 1: # New code
return np.NaN # New code
times = list(times)
winner = min(times)
times.remove(winner)
return min(times) - winner
your code runs with this change and seem to produce sensible results. But you can furthermore remove NaNs later if you want eg in this line
winning_margins = df[['RaceNumber', 'TimeRanInSec']] \
.groupby('RaceNumber').agg(winning_margin).dropna() # note the addition of .dropna()
You could get the winner and margin in one step:
def get_margin(x):
if len(x) < 2:
return np.NaN
i = x['TimeRanInSec'].idxmin()
nl = x['TimeRanInSec'].nsmallest(2)
margin = nl.max()-nl.min()
return [x['Name'].loc[i], margin]
Then:
df.groupby('RaceNumber').apply(get_margin).dropna()
RaceNumber
1 [B, 2]
2 [C, 6]
3 [C, 5]
(the data has the 'First' indicator corresponding to the slower time in the data)

Python Pandas Create Multiple dataframes by slicing data at certain locations

I am new to Python and data analysis using programming. I have a long csv and I would like to create DataFrame dynamically and plot them later on. Here is an example of the DataFrame similar to the data exist in my csv file
df = pd.DataFrame(
{"a" : [4 ,5, 6, 'a', 1, 2, 'a', 4, 5, 'a'],
"b" : [7, 8, 9, 'b', 0.1, 0.2, 'b', 0.3, 0.4, 'b'],
"c" : [10, 11, 12, 'c', 10, 20, 'c', 30, 40, 'c']})
As seen, there are elements which repeated in each column. So I would first need to find the index of the repetition and following that use this for making subsets. Here is the way I did this.
find_Repeat = df.groupby(['a'], group_keys=False).apply(lambda df: df if
df.shape[0] > 1 else None)
repeat_idxs = find_Repeat.index[find_Repeat['a'] == 'a'].tolist()
If I print repeat_idxs, I would get
[3, 6, 9]
And this is the example of what I want to achieve in the end
dfa_1 = df['a'][Index_Identifier[0], Index_Identifier[1])
dfa_2 = df['a'][Index_Identifier[1], Index_Identifier[2])
dfb_1 = df['b'][Index_Identifier[0], Index_Identifier[1])
dfb_2 = df['b'][Index_Identifier[1], Index_Identifier[2])
But this is not efficient and convenient as I need to create many DataFrame like these for plotting later on. So I tried the following method
dfNames = ['dfa_' + str(i) for i in range(len(repeat_idxs))]
dfs = dict()
for i, row in enumerate(repeat_idxs):
dfName = dfNames[i]
slices = df['a'].loc[row:row+1]
dfs[dfName] = slices
If I print dfs, this is exactly what I want.
{'df_0': 3 a
4 1
Name: a, dtype: object, 'df_1': 6 a
7 4
Name: a, dtype: object, 'df_2': 9 a
Name: a, dtype: object}
However, if I want to read my csv and apply the above, I am not getting what's desired. I can find the repeated indices from csv file but I am not able to slice the data properly. I am presuming that I am not reading csv file correctly. I attached the csv file for further clarification csv file
Two options:
Loop over and slice
Detect the repeat row indices and then loop over to slice contiguous chunks of the dataframe, ignoring the repeat rows:
# detect rows for which all values are equal to the column names
repeat_idxs = df.index[(df == df.columns.values).all(axis=1)]
slices = []
start = 0
for i in repeat_idxs:
slices.append(df.loc[start:i - 1])
start = i + 1
The result is a list of dataframes slices, which are the slices of your data in order.
Use pandas groupby
You could also do this in one line using pandas groupby if you prefer:
grouped = df[~(df == df.columns.values).all(axis=1)].groupby((df == df.columns.values).all(axis=1).cumsum())
And you can now iterate over the groups like so:
for i, group_df in grouped:
# do something with group_df

Resources