Custom loss function in pytorch 1.10.1 - pytorch

I am struggeling with defining a custom loss function for pytorch 1.10.1. My model outputs a float ranging from -1 to +1. The target values are floats of arbitrary range. The loss should be a sum of pruducts if the sign between the model output and target is different.
I have searched the internet for quite some hours, but it seems there have been some changes to pytorch throughout the last versions, so I don't really know which example would best fit to my use case and pytorch 1.10.1.
Here is my approach so far:
class Loss(torch.nn.Module):
#staticmethod
def forward(self, output, target) -> Tensor:
loss = 0.0
for i in range(len(target)):
o = output[i,0]
t = target[i]
l = o * t
if l<0: #if different sign
loss -= l
return loss
Question:
Should I subclass torch.nn.Module or torch.autograd.Function?
Do I need to define #staticmethod?
On some examples, I saw ctx instead of self being used and invocations of ctx.save_for_backward etc. Do I need this? What is its purpose?
When subclassing torch.nn.Module, my code complains: 'Tensor' object has no attribute 'children'. What am I missing?
When subclassing torch.autograd.Function, my code complains about not having a backward function defined. How should my backward function look like?

Custom loss functions can be as simple as a python function. You can simplify this a bit:
def custom_loss(output, target):
prod = output[:,0]*target
return -prod[prod<0].sum()

Related

How to evaluate loss only on elements satisfying a condition pytorch

I'm working on a regression problem in pytorch. I get good results on my evaluation set, but I want to make sure it's not because I have many small elements and less large ones. Therefore, I would like to check whether I get similar loss for the large elements (eg. elements > 0.01). I use mse loss.
Can anyone pls suggest a way of doing so?
Thanks!
You can zero-out loss for smaller elements (assuming size of elements is based on your regression target), you can implement your own loss function like this:
import torch
class CustomMSE:
def __init__(self, threshold=0.01, reduction=torch.mean):
self.threshold = threshold
self.reduction = reduction
def __call__(self, output, target):
# Do not reduce, so you get per-element loss
loss = torch.nn.functional.mse_loss(output, target, reduction="none")
loss[target < self.threshold] = 0
return self.reduction(loss)
criterion = CustomMSE()
You can use it just like torch.nn.MSELoss, this should give you an overall idea.

How to correctly implement a batch-input LSTM network in PyTorch?

This release of PyTorch seems provide the PackedSequence for variable lengths of input for recurrent neural network. However, I found it's a bit hard to use it correctly.
Using pad_packed_sequence to recover an output of a RNN layer which were fed by pack_padded_sequence, we got a T x B x N tensor outputs where T is the max time steps, B is the batch size and N is the hidden size. I found that for short sequences in the batch, the subsequent output will be all zeros.
Here are my questions.
For a single output task where the one would need the last output of all the sequences, simple outputs[-1] will give a wrong result since this tensor contains lots of zeros for short sequences. One will need to construct indices by sequence lengths to fetch the individual last output for all the sequences. Is there more simple way to do that?
For a multiple output task (e.g. seq2seq), usually one will add a linear layer N x O and reshape the batch outputs T x B x O into TB x O and compute the cross entropy loss with the true targets TB (usually integers in language model). In this situation, do these zeros in batch output matters?
Question 1 - Last Timestep
This is the code that i use to get the output of the last timestep. I don't know if there is a simpler solution. If it is, i'd like to know it. I followed this discussion and grabbed the relative code snippet for my last_timestep method. This is my forward.
class BaselineRNN(nn.Module):
def __init__(self, **kwargs):
...
def last_timestep(self, unpacked, lengths):
# Index of the last output for each sequence.
idx = (lengths - 1).view(-1, 1).expand(unpacked.size(0),
unpacked.size(2)).unsqueeze(1)
return unpacked.gather(1, idx).squeeze()
def forward(self, x, lengths):
embs = self.embedding(x)
# pack the batch
packed = pack_padded_sequence(embs, list(lengths.data),
batch_first=True)
out_packed, (h, c) = self.rnn(packed)
out_unpacked, _ = pad_packed_sequence(out_packed, batch_first=True)
# get the outputs from the last *non-masked* timestep for each sentence
last_outputs = self.last_timestep(out_unpacked, lengths)
# project to the classes using a linear layer
logits = self.linear(last_outputs)
return logits
Question 2 - Masked Cross Entropy Loss
Yes, by default the zero padded timesteps (targets) matter. However, it is very easy to mask them. You have two options, depending on the version of PyTorch that you use.
PyTorch 0.2.0: Now pytorch supports masking directly in the CrossEntropyLoss, with the ignore_index argument. For example, in language modeling or seq2seq, where i add zero padding, i mask the zero padded words (target) simply like this:
loss_function = nn.CrossEntropyLoss(ignore_index=0)
PyTorch 0.1.12 and older: In the older versions of PyTorch, masking was not supported, so you had to implement your own workaround. I solution that i used, was masked_cross_entropy.py, by jihunchoi. You may be also interested in this discussion.
A few days ago, I found this method which uses indexing to accomplish the same task with a one-liner.
I have my dataset batch first ([batch size, sequence length, features]), so for me:
unpacked_out = unpacked_out[np.arange(unpacked_out.shape[0]), lengths - 1, :]
where unpacked_out is the output of torch.nn.utils.rnn.pad_packed_sequence.
I have compared it with the method described here, which looks similar to the last_timestep() method Christos Baziotis is using above (also recommended here), and the results are the same in my case.

slicing keras Variable custom objective function

I've been trying to implement a custom objective function in Keras (the negative log likelihood of the normal distribution)
Keras expects one argument for the ground truth tensor, and one for the predictions tensor; for y_pred,I'm passing a tensor that should represent a nx2 matrix where the first column is the mean of the distribution, and the second the precision.
My problem is that I haven't been able to get a clear idea how I properly slice y_pred before passing it into the likelihood function without yielding the error
'Expected an array-like object, but found a Variable: maybe you are trying to call a function on a (possibly shared) variable instead of a numeric array?'
While I understand that I'm feeding l_func arguments of the variable type when it expects an array,I don't seem to be able to grok how to properly split the input y_pred variable into its mean and precision components to plug into the likelihood function. Here are some attempts; if someone could enlighten me about how to proceed, I would greatly appreciate it.
def log_likelihood(y_true,y_pred):
mu = T.vector('mu')
beta = T.vector('beta')
x=T.vector('x')
likelihood = .5*(beta*(x-mu)**2)-T.log(beta/(2*np.pi))
l_func = function([mu,beta,x], likelihood)
return(l_func(y_pred[:,0],y_pred[:,1],y_true))
def log_likelihood(y_true,y_pred):
likelihood = .5*(y_pred[:,1]*(y_true-y_pred[:,0])**2)-T.log(y_pred[:,1]/(2*np.pi))
l_func = function([y_true,y_pred], likelihood)
return(l_func(y_true,y_pred))
def log_likelihood(y_true,y_pred):
mu=y_pred[:,0]
beta=y_pred[:,1]
x=y_true
mu_function=function([y_pred],mu)
beta_function=function([y_pred],beta)
id_function=function([y_true],x)
likelihood = .5*(beta_function(y_pred)*(id_function(y_true)-mu_function(y_pred))**2)-T.log(beta_function(y_pred)/(2*np.pi))
l_func = function([y_true,y_pred], likelihood)
return(l_func(y_true,y_pred))

pymc3 theano function usage

I'm trying to define a complex custom likelihood function using pymc3. The likelihood function involves a lot of iteration, and therefore I'm trying to use theano's scan method to define iteration directly within theano. Here's a greatly simplified example that illustrates the challenge that I'm facing. The (fake) likelihood function I'm trying to define is simply the sum of two pymc3 random variables, p and theta. Of course, I could simply return p+theta, but the actual likelihood function I'm trying to write is more complicated, and I believe I need to use theano.scan since it involves a lot of iteration.
import pymc3 as pm
from pymc3 import Model, Uniform, DensityDist
import theano.tensor as T
import theano
import numpy as np
### theano test
theano.config.compute_test_value = 'raise'
X = np.asarray([[1.0,2.0,3.0],[1.0,2.0,3.0]])
### pymc3 implementation
with Model() as bg_model:
p = pm.Uniform('p', lower = 0, upper = 1)
theta = pm.Uniform('theta', lower = 0, upper = .2)
def logp(X):
f = p+theta
print("f",f)
get_ll = theano.function(name='get_ll',inputs = [p, theta], outputs = f)
print("p keys ",p.__dict__.keys())
print("theta keys ",theta.__dict__.keys())
print("p name ",p.name,"p.type ",p.type,"type(p)",type(p),"p.tag",p.tag)
result=get_ll(p, theta)
print("result",result)
return result
y = pm.DensityDist('y', logp, observed = X) # Nx4 y = f(f,x,tx,n | p, theta)
When I run this, I get the error:
TypeError: ('Bad input argument to theano function with name "get_ll" at index 0(0-based)', 'Expected an array-like object, but found a Variable: maybe you are trying to call a function on a (possibly shared) variable instead of a numeric array?')
I understand that the issue occurs in line
result=get_ll(p, theta)
because p and theta are of type pymc3.TransformedRV, and that the input to a theano function needs to be a scalar number of a simple numpy array. However, a pymc3 TransformedRV does not seem to have any obvious way of obtaining the current value of the random variable itself.
Is it possible to define a log likelihood function that involves the use of a theano function that takes as input a pymc3 random variable?
The problem is that your th.function get_ll is a compiled theano function, which takes as input numerical arrays. Instead, pymc3 is sending it a symbolic variable (theano tensor). That's why you're getting the error.
As to your solution, you're right in saying that just returning p+theta is the way to go. If you have scans and whatnot in your logp, then you would return the scan variable of interest; there is no need to compile a theano function here. For example, if you wanted to add 1 to each element of a vector (as an impractical toy example), you would do:
def logp(X):
the_sum, the_sum_upd = th.scan(lambda x: x+1, sequences=[X])
return the_sum
That being said, if you need gradients, you would need to calculate your the_sum variable in a theano Op and provide a grad() method along with it (you can see a toy example of that on the answer here). If you do not need gradients, you might be better off doing everything in python (or C, numba, cython, for performance) and using the as_op decorator.

How to add a confusion matrix to Theano examples?

I want to make use of Theano's logistic regression classifier, but I would like to make an apples-to-apples comparison with previous studies I've done to see how deep learning stacks up. I recognize this is probably a fairly simple task if I was more proficient in Theano, but this is what I have so far. From the tutorials on the website, I have the following code:
def errors(self, y):
# check if y has same dimension of y_pred
if y.ndim != self.y_pred.ndim:
raise TypeError(
'y should have the same shape as self.y_pred',
('y', y.type, 'y_pred', self.y_pred.type)
)
# check if y is of the correct datatype
if y.dtype.startswith('int'):
# the T.neq operator returns a vector of 0s and 1s, where 1
# represents a mistake in prediction
return T.mean(T.neq(self.y_pred, y))
I'm pretty sure this is where I need to add the functionality, but I'm not certain how to go about it. What I need is either access to y_pred and y for each and every run (to update my confusion matrix in python) or to have the C++ code handle the confusion matrix and return it at some point along the way. I don't think I can do the former, and I'm unsure how to do the latter. I've done some messing around with an update function along the lines of:
def confuMat(self, y):
x=T.vector('x')
classes = T.scalar('n_classes')
onehot = T.eq(x.dimshuffle(0,'x'),T.arange(classes).dimshuffle('x',0))
oneHot = theano.function([x,classes],onehot)
yMat = T.matrix('y')
yPredMat = T.matrix('y_pred')
confMat = T.dot(yMat.T,yPredMat)
confusionMatrix = theano.function(inputs=[yMat,yPredMat],outputs=confMat)
def confusion_matrix(x,y,n_class):
return confusionMatrix(oneHot(x,n_class),oneHot(y,n_class))
t = np.asarray(confusion_matrix(y,self.y_pred,self.n_out))
print (t)
But I'm not completely clear on how to get this to interface with the function in question and give me a numpy array I can work with.
I'm quite new to Theano, so hopefully this is an easy fix for one of you. I'd like to use this classifer as my output layer in a number of configurations, so I could use the confusion matrix with other architectures.
I suggest using a brute force sort of a way. You need an output for a prediction first. Create a function for it.
prediction = theano.function(
inputs = [index],
outputs = MLPlayers.predicts,
givens={
x: test_set_x[index * batch_size: (index + 1) * batch_size]})
In your test loop, gather the predictions...
labels = labels + test_set_y.eval().tolist()
for mini_batch in xrange(n_test_batches):
wrong = wrong + int(test_model(mini_batch))
predictions = predictions + prediction(mini_batch).tolist()
Now create confusion matrix this way:
correct = 0
confusion = numpy.zeros((outs,outs), dtype = int)
for index in xrange(len(predictions)):
if labels[index] is predictions[index]:
correct = correct + 1
confusion[int(predictions[index]),int(labels[index])] = confusion[int(predictions[index]),int(labels[index])] + 1
You can find this kind of an implementation in this repository.

Resources