pandas computation on rolling 1 calendar month - python-3.x

I have a pandas DataFrame with date as the index and a column, 'spendings'. I intend to get the rolling max() of the 'spendings' column for the trailing 1 calendar month (not 30 days or 4 weeks).
I tried to capture a snippet with custom data for addressing the problem, below (borrowed from Pandas monthly rolling operation):
import pandas as pd
from io import StringIO
data = StringIO(
"""\
date spendings
20210325 15
20210405 20
20210415 10
20210425 40
20210505 3
20210515 2
20210525 2
20210527 1
"""
)
df = pd.read_csv(data,sep="\s+", parse_dates=True)
df.index = pd.to_datetime(df.date, format='%Y%m%d')
del(df['date'])
Now, to create a column 'max' to hold rolling last 1 calendar month's max() val, I use:
df['max'] = df.loc[(df.index - pd.tseries.offsets.DateOffset(months=1)):df.index, 'spendings'].max()
This raises an exception like:
TypeError: cannot do slice indexing on DatetimeIndex with these indexers [DatetimeIndex(['2021-02-25', '2021-03-05', '2021-03-15', '2021-03-25',
'2021-04-05', '2021-04-15', '2021-04-25'],
dtype='datetime64[ns]', name='date', freq=None)] of type DatetimeIndex
However, if I manually access a random month window like below, it works without exception:
>>> df['2021-04-16':'2021-05-15']
spendings
date
2021-04-25 40
2021-05-05 3
2021-05-15 2
(I could have followed the method using list comprehension here: https://stackoverflow.com/a/47199274/235415, but I would like to use panda's vectorized method. I have many DataFrames and each is very large - using list comprehension is very slow here).
Q: How to get the vectorized method of performing rolling 1 calendar month's max()?
The expected o/p, ie primarily the 'max' column (holding the max value of 'spendings' for last 1 calendar month) will be something like this:
>>> df
spendings max
date
2021-03-25 15 15
2021-04-05 20 20
2021-04-15 10 20
2021-04-25 40 40
2021-05-05 3 40
2021-05-15 2 40
2021-05-25 2 40
2021-05-27 1 3

The answer will be
[df.loc[x- pd.tseries.offsets.DateOffset(months=1):x, 'spendings'].max() for x in df.index]
Out[53]: [15, 20, 20, 40, 40, 40, 40, 3]

Related

how to set datetime type index for weekly column in pandas dataframe

I have a data as given below:
date product price amount
201901 A 10 20
201902 A 10 20
201903 A 20 30
201904 C 40 50
This data is saved in test.txt file.
Date column is given as a weekly column as a concatenation of year and weekid. I am trying to set the date column as an index, with given code:
import pandas as pd
import numpy as np
data=pd.read_csv("test.txt", sep="\t", parse_dates=['date'])
But it gives an error. How can I set the date column as an index with datetime type?
Use index_col parameter for setting index:
data=pd.read_csv("test.txt", sep="\t", index_col=[0])
EDIT: Using column name as index:
data=pd.read_csv("test.txt", sep="\t", index_col=['date'])
For converting index from int to date time, do this:
data.index = pd.to_datetime(data.index, format='%Y%m')
There might be simpler solutions than this too, using apply first I converted your Year-Weekid into Year-month-day format and then just simply used set_index to make date as index column.
import pandas as pd
data ={
'date' : [201901,201902,201903,201904,201905],
'product' : ['A','A','A','C','C'],
'price' : [10,10,10,20,20],
'amount' : [20,20,30,50,60]
}
df = pd.DataFrame(data)
# str(x)+'1' converts to Year-WeekId-Weekday, so 1 represents `Monday` so 2019020
# means 2019 Week2 Monday.
# If you want you can try with other formats too
df['date'] = df['date'].apply(lambda x: pd.to_datetime(str(x)+'1',format='%Y%W%w'))
df.set_index(['date'],inplace=True)
df
Edit:
To see datetime in Year-WeekID format you can style the dataframe as follows, however if you set date as index column following code won't be able to work. And also remember following code just applies some styling so just useful for display purpose only, internally it will remain as date-time object.
df['date'] = df['date'].apply(lambda x: pd.to_datetime(str(x)+'1',format='%Y%W%w'))
style_format = {'date':'{:%Y%W}'}
df.style.format(style_format)
You also can use the date_parser parameter:
import pandas as pd
from io import StringIO
from datetime import datetime
dateparse = lambda x: datetime.strptime(x, '%Y%m')
inputtxt = StringIO("""date product price amount
201901 A 10 20
201902 A 10 20
201903 A 20 30
201904 C 40 50""")
df = pd.read_csv(inputtxt, sep='\s+', parse_dates=['date'], date_parser=dateparse)
df.info()
Output:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4 entries, 0 to 3
Data columns (total 4 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 date 4 non-null datetime64[ns]
1 product 4 non-null object
2 price 4 non-null int64
3 amount 4 non-null int64
dtypes: datetime64[ns](1), int64(2), object(1)
memory usage: 256.0+ bytes

Alternative to looping? Vectorisation, cython?

I have a pandas dataframe something like the below:
Total Yr_to_Use First_Year_Del Del_rate 2019 2020 2021 2022 2023 etc
ref1 100 2020 5 10 0 0 0 0 0
ref2 20 2028 2 5 0 0 0 0 0
ref3 30 2021 7 16 0 0 0 0 0
ref4 40 2025 9 18 0 0 0 0 0
ref5 10 2022 4 30 0 0 0 0 0
The 'Total' column shows how many of a product needs to be delivered.
'First_yr_Del' tells you how many will be delivered in the first year. After this the delivery rate reverts to 'Del_rate' - a flat rate that can be applied each year until all products are delivered.
The 'Year to Use' column tells you the first year column to begin delivery from.
EXAMPLE: Ref1 has 100 to deliver. It will start delivering in 2020 and will deliver 5 in the first year, and 10 each year after that until all 100 are accounted for.
Any ideas how to go about this?
I thought i might use something like the below to reference which columns to use in turn, but i'm not even sure if that's helpful or not as it will depend on the solution (in the proper version, base_date.year is defined as the first column in the table - 2019):
start_index_for_slice = df.columns.get_loc(base_date.year)
end_index_for_slice = start_index_for_slice+no_yrs_to_project
df.columns[start_index_for_slice:end_index_for_slice]
I'm pretty new to python and aren't sure if i'm getting ahead of myself a bit...
The way i would think to go about it would be to use a for loop, or something using iterrows, but other posts seem to say this is a bad idea and i should be using vectorisation, cython or lambdas. Of those 3 i've only managed a very simple lambda so far. The others are a bit of a mystery to me since the solution seems to suggest doing one action after another until complete.
Any and all help appreciated!
Thanks
EDIT: Example expected output below (I edited some of the dates so you can better see the logic):
Total Yr_to_Use First_Year_Del Del_rate 2019 2020 2021 2022 2023etc
ref1 100 2020 5 10 0 5 10 10 10
ref2 20 2021 2 5 0 0 2 5 5
ref3 30 2021 7 16 0 0 7 16 7
ref4 40 2019 9 18 9 18 13 0 0
ref5 10 2020 4 30 0 4 6 0 0
Here's another option, which separates the calculation of the rates/years matrix and appends it to the input df later on. Still does looping in the script itself (not "externalized" to some numpy / pandas function). Should be fine for 5k rows I'd guesstimate.
import pandas as pd
import numpy as np
# def gen_df1():
# create the inital df without years/rates
df = pd.DataFrame({'Total': [100, 20, 30, 40, 10],
'Yr_to_Use': [2020, 2021, 2021, 2019, 2020],
'First_Year_Del': [5, 2, 7, 9, 10],
'Del_rate': [10, 5, 16, 18, 30]})
# get number of rates + remainder
n, r = np.divmod((df['Total']-df['First_Year_Del']), df['Del_rate'])
# get the year of the last rate considering all rows
max_year = np.max(n + r.astype(np.bool) + df['Yr_to_Use'])
# get the offsets for the start of delivery, year zero is 2019
offset = df['Yr_to_Use'] - 2019
# subtracting the year zero lets you use this as an index...
# get a year index; this determines the the columns that will be created
yrs = np.arange(2019, max_year+1)
# prepare a n*m array to hold the rates for all years, initalize with all zero
out = np.zeros((df['Total'].shape[0], yrs.shape[0]))
# n: number of rows of the df, m: number of years where rates will have to be payed
# calculate the rates for each year and insert them into the output array
for i in range(df['Total'].shape[0]):
# concatenate: year of the first rate, all yearly rates, a final rate if there was a remainder
if r[i]: # if rest is not zero, append it as well
rates = np.concatenate([[df['First_Year_Del'][i]], n[i]*[df['Del_rate'][i]], [r[i]]])
else: # rest is zero, skip it
rates = np.concatenate([[df['First_Year_Del'][i]], n[i]*[df['Del_rate'][i]]])
# insert the rates at the apropriate location of the output array:
out[i, offset[i]:offset[i]+rates.shape[0]] = rates
# add the years/rates matrix to the original df
df = pd.concat([df, pd.DataFrame(out, columns=yrs.astype(str))], axis=1, sort=False)
You can accomplish this using two user-defined function and apply method
import pandas as pd
import numpy as np
df = pd.DataFrame(data={'id': ['ref1','ref2','ref3','ref4','ref5'],
'Total': [100, 20, 30, 40, 10],
'Yr_to_Use': [2020, 2028, 2021, 2025, 2022],
'First_Year_Del': [5,2,7,9,4],
'Del_rate':[10,5,16,18,30]})
def f(r):
'''
Computes values per year and respective year
'''
n = (r['Total'] - r['First_Year_Del'])//r['Del_rate']
leftover = (r['Total'] - r['First_Year_Del'])%r['Del_rate']
r['values'] = [r['First_Year_Del']] + [r['Del_rate'] for _ in range(n)] + [leftover]
r['years'] = np.arange(r['Yr_to_Use'], r['Yr_to_Use'] + len(r['values']))
return r
df = df.apply(f, axis=1)
def get_year_range(r):
'''
Computes min and max year for each row
'''
r['y_min'] = min(r['years'])
r['y_max'] = max(r['years'])
return r
df = df.apply(get_year_range, axis=1)
y_min = df['y_min'].min()
y_max = df['y_max'].max()
#Initialize each year value to zero
for year in range(y_min, y_max+1):
df[year] = 0
def expand(r):
'''
Update value for each year
'''
for v, y in zip(r['values'], r['years']):
r[y] = v
return r
# Apply and drop temporary columns
df = df.apply(expand, axis=1).drop(['values', 'years', 'y_min', 'y_max'], axis=1)

can you re-sample a series without dates?

I have a time series from months 1 to 420 (35 years). I would like to convert to an annual series using the average of the 12 months in each year so I can put in a dataframe I have with annual datapoints. I have it setup using a range with steps of 12 but it gets kind of messy. Ideally would like to use the resample function but having trouble since no dates. Any way around this?
There's no need to resample in this case. Just use groupby with integer division to obtain the average over the years.
import numpy as np
import pandas as pd
# Sample Data
np.random.seed(123)
df = pd.DataFrame({'Months': np.arange(1,421,1),
'val': np.random.randint(1,10,420)})
# Create Yearly average. 1-12, 13-24, Subtract 1 before // to get this grouping
df.groupby((df.Months-1)//12).val.mean().reset_index().rename(columns={'Months': 'Year'})
Outputs:
Year val
0 0 3.083333
1 1 4.166667
2 2 5.250000
3 3 4.416667
4 4 5.500000
5 5 4.583333
...
31 31 5.333333
32 32 5.000000
33 33 6.250000
34 34 5.250000
Feel free to add 1 to the year column or whatever you need to make it consistent with indexing in your other annual df. Otherwise, you could just use df.groupby((df.Months+11)//12).val().mean() to get the Year to start at 1.

Populating pandas column based on moving date range (efficiently)

I have 2 pandas dataframes, one of them contains dates with measurements, and the other contains dates with an event ID.
df1
from datetime import datetime as dt
from datetime import timedelta
import pandas as pd
import numpy as np
today = dt.now()
ndays = 10
df1 = pd.DataFrame({'Date': [today + timedelta(days = x) for x in range(ndays)], 'measurement': pd.Series(np.random.randint(1, high = 10, size = ndays))})
df1.Date = df1.Date.dt.date
Date measurement
2018-01-10 8
2018-01-11 2
2018-01-12 7
2018-01-13 3
2018-01-14 1
2018-01-15 1
2018-01-16 6
2018-01-17 9
2018-01-18 8
2018-01-19 4
df2
df2 = pd.DataFrame({'Date': ['2018-01-11', '2018-01-14', '2018-01-16', '2018-01-19'], 'letter': ['event_a', 'event_b', 'event_c', 'event_d']})
df2.Date = pd.to_datetime(df2.Date, format = '%Y-%m-%d')
df2.Date = df2.Date.dt.date
Date event_id
2018-01-11 event_a
2018-01-14 event_b
2018-01-16 event_c
2018-01-19 event_d
I give the dates in df1 an event_id from df2 only if it's between two event dates. The resulting dataframe would look something like:
df3
today = dt.now()
ndays = 10
df3 = pd.DataFrame({'Date': [today + timedelta(days = x) for x in range(ndays)], 'measurement': pd.Series(np.random.randint(1, high = 10, size = ndays)), 'event_id': ['event_a', 'event_a', 'event_b', 'event_b', 'event_b', 'event_c', 'event_c', 'event_d', 'event_d', 'event_d']})
df3.Date = df3.Date.dt.date
Date event_id measurement
2018-01-10 event_a 4
2018-01-11 event_a 2
2018-01-12 event_b 1
2018-01-13 event_b 5
2018-01-14 event_b 5
2018-01-15 event_c 4
2018-01-16 event_c 6
2018-01-17 event_d 6
2018-01-18 event_d 9
2018-01-19 event_d 6
The code I use to achieve this is:
n = 1
while n <= len(list(df2.Date)) - 1 :
for date in list(df1.Date):
if date <= df2.iloc[n].Date and (date > df2.iloc[n-1].Date):
df1.loc[df1.Date == date, 'event_id'] = df2.iloc[n].event_id
n += 1
The dataset that I am working with is significantly larger than this (a few million rows) and this method runs far too long. Is there a more efficient way to accomplish this?
So there are quite a few things to improve performance.
The first question I have is: does it have to be a pandas frame to begin with? Meaning can't df1 and df2 just be lists of tuples or list of lists?
The thing is that pandas adds a significant overhead when accessing items but especially when setting values individually.
Pandas excels when it comes to vectorized operations but I don't see an efficient alternative right now (maybe someone comes up with such an answer, that would be ideal).
Now what I'd do is:
Convert your df1 and df2 to records -> e.g. d1 = df1.to_records() what you get is an array of tuples, basically with the same structure as the dataframe.
Now run your algorithm but instead of operating on pandas dataframes you operate on the arrays of tuples d1 and d2
Use a third list of tuples d3 where you store the newly created data (each tuple is a row)
Now if you want you can convert d3 back to a pandas dataframe:
df3 = pd.DataFrame.from_records(d3, myKwArgs**)
This will speed up your code significantly I'd assume by more than 100-1000%. It does increase memory usage though, so if you are low on memory try to avoid the pandas dataframes all-together or dereference unused pandas frames df1, df2 once you used them to create the records (and if you run into problems call gc manually).
EDIT: Here a version of your code using the procedure above:
d3 = []
n = 1
while n < range(len(d2)):
for i in range(len(d1)):
date = d1[i][0]
if date <= d2[n][0] and date > d2[n-1][0]:
d3.append( (date, d2[n][1], d1[i][1]) )
n += 1
You can try df.apply() method to achieve this. Refer pandas.DataFrame.apply. I think my code will works faster than yours.
My approach:
Merge two dataframes df1 and df2 and create new one df3 by
df3 = pd.merge(df1, df2, on='Date', how='outer')
Sort df3 by date to make easy to travserse.
df3['Date'] = pd.to_datetime(df3.Date)
df3.sort_values(by='Date')
Create set_event_date() method to apply for each rows in df3.
new_event_id = np.nan
def set_event_date(df3):
global new_event_id
if df3.event_id is not np.nan:
new_event_id = df3.event_id
return new_event_id
Apply set_event_method() to each rows in df3.
df3['new_event_id'] = df3.apply(set_event_date,axis=1)
Final Output will be:
Date Measurement New_event_id
0 2018-01-11 2 event_a
1 2018-01-12 1 event_a
2 2018-01-13 3 event_a
3 2018-01-14 6 event_b
4 2018-01-15 3 event_b
5 2018-01-16 5 event_c
6 2018-01-17 7 event_c
7 2018-01-18 9 event_c
8 2018-01-19 7 event_d
9 2018-01-20 4 event_d
Let me know once you tried my solution and it works faster than yours.
Thanks.

Parse dates and create time series from .csv

I am using a simple csv file which contains data on calory intake. It has 4 columns: cal, day, month, year. It looks like this:
cal month year day
3668.4333 1 2002 10
3652.2498 1 2002 11
3647.8662 1 2002 12
3646.6843 1 2002 13
...
3661.9414 2 2003 14
# data types
cal float64
month int64
year int64
day int64
I am trying to do some simple time series analysis. I hence would like to parse month, year, and day to a single column. I tried the following using pandas:
import pandas as pd
from pandas import Series, DataFrame, Panel
data = pd.read_csv('time_series_calories.csv', header=0, pars_dates=['day', 'month', 'year']], date_parser=True, infer_datetime_format=True)
My questions are: (1) How do I parse the data and (2) define the data type of the new column? I know there are quite a few other similar questions and answers (see e.g. here, here and here) - but I can't make it work so far.
You can use parameter parse_dates where define column names in list in read_csv:
import pandas as pd
import numpy as np
import io
temp=u"""cal,month,year,day
3668.4333,1,2002,10
3652.2498,1,2002,11
3647.8662,1,2002,12
3646.6843,1,2002,13
3661.9414,2,2003,14"""
#after testing replace io.StringIO(temp) to filename
df = pd.read_csv(io.StringIO(temp), parse_dates=[['year','month','day']])
print (df)
year_month_day cal
0 2002-01-10 3668.4333
1 2002-01-11 3652.2498
2 2002-01-12 3647.8662
3 2002-01-13 3646.6843
4 2003-02-14 3661.9414
print (df.dtypes)
year_month_day datetime64[ns]
cal float64
dtype: object
Then you can rename column:
df.rename(columns={'year_month_day':'date'}, inplace=True)
print (df)
date cal
0 2002-01-10 3668.4333
1 2002-01-11 3652.2498
2 2002-01-12 3647.8662
3 2002-01-13 3646.6843
4 2003-02-14 3661.9414
Or better is pass dictionary with new column name to parse_dates:
df = pd.read_csv(io.StringIO(temp), parse_dates={'dates': ['year','month','day']})
print (df)
dates cal
0 2002-01-10 3668.4333
1 2002-01-11 3652.2498
2 2002-01-12 3647.8662
3 2002-01-13 3646.6843
4 2003-02-14 3661.9414

Resources