What is the main purpose of MTU in Bluetooth BREDR - bluetooth

As much I understood
MTU is the maximum transmission unit, which specifies the Maximum size of the SDU packet.
I need more relevant information about MTU.
Please guide me.
Thank you in advance

Related

Get Latency of Bluetooth Headphoners UWP C++

I want to make sure the latency between my app and the bluetooth headphones is accounted for, but I have absolutely no idea how I can get this value. The closest thing I found was:
BluetoothLEPreferredConnectionParameters.ConnectionLatency which is only available on Windows 11... Otherwise there isn't much to go on.
Any help would be appreciated.
Thanks,
Peter
It's very difficult to get the exact latency because it is affected by many parameters - but you're on the right track by guessing that the connection parameters are a factor of this equation. I don't have much knowledge on UWP, but I can give you the general parameters that affect the speed/latency, and then you can check their availability in the API or even contact Windows technical team to see if these are supported.
When you make a connection with a remote device, the following factors impact the speed/latency of the connection:-
Connection Interval: this specifies the interval at which the packets are sent during a connection. The lower the value, the higher the speed. The minimum value as per the Bluetooth spec is 7.5ms.
Slave Latency: this is the value you originally mentioned - it specifies the number of packets that can be missed before a connection is considered lost. A value of 0 means that you have the fastest most robust connection.
Connection PHY: this is the modulation on which the packets are sent. If both devices support 2MPHY, then the connection should be quicker.
Data Length/MTU Extension: these are two separate features but I am looping them together becuase the effect is the same - more bytes are sent per packet, which results in a higher throughput. The maximum value is 251 bytes per packet.
You can find more information about these parameters here:-
A Practical Guide to BLE Throughput
Maximizing BLE Throughput: Everything You Need to Know
Bluetooth 5 Speed - How to Achieve Maximum Throughput
And below are some other links that might help you understand what is supported on UWP:-
Bluetooth Developer FAQ
BluetoothLEConnectionParameters.OptimizedProperty
Bluetooth LE Preferred Connection Parameter Class
Bluetooth LE Connection PHY class
How to Change MTU Size and PHY on Windows UWP C++

How to simulate and detect NIC ring buffer overflow on Linux

As I know, there's a ring buffer for Network Interface Card, and if such buffer is overflow, the incoming packet will be dropped unless kernel drains packet and free space in buffer.
My question is how to detect such NIC ring buffer overflow on Linux?
How to simulate such ring buffer overflow on Linux? Modification of /proc is acceptable if necessary.
Updated at Feb 2, 2016:
I will accept John Zwinck's explanation as answer, while if anyone have knowledge of simulating the ring buffer overflow, please also let me know, thanks in advance.
1) You can detect buffer overflow by examination of NIC statistics: ethtool -s eno1. There will be a lot of information in output. Field's name are driver depended. For example in tg3 driver filed "rx_discards" - is one you are looking for. It store the amount of packets which was dropped due to full buffer.
2) When I need to get packets dropping, I set buffer size into very small value (2 for example): ethtool -G eno1 rx 2. And load the network card with netperf.
I don't think you can (portably) detect or simulate this. There may be ways to do it using a specific NIC driver, but you'd have to specify exactly what you're using, and I suspect for consumer-grade products it won't be possible. You can measure and adjust the size of the ring buffers using ethtool -g however, which is explained here: http://www.scottalanmiller.com/linux/2011/06/20/working-with-nic-ring-buffers/
I tried to fill the buffer by sudo ethtool -C eth0 rx-usecs 10000 and sudo ethtool -G eth0 rx 48. The first command sets how many usecs to delay an RX interrupt after a packet arrives. And the second command sets the RX ring buffer size. Then I opened some websites and watched some videos,the ring buffer was full then the dropped packet count increased.
And it seems that the minimum ring buffer size is 48, as no matter how small I set it, ethtool -g eth0 always shows that the current buffer size is 48.

Is zero-copy UDP packing receiving possibly on Linux?

I would like to have UDP packets copied directly from the ethernet adapter into my userspace buffer
Some details on my setup:
I am receiving data from a pair of gigabit ethernet cameras. Combined I am receiving 28800 UDP packets per second (1 packet per line * 30FPS * 2 cameras * 480 lines). There is no way for me to switch to jumbo frames, and I am already looking into tuning driver level interrupts for reduced CPU utilization. What I am after here is reducing the number of times I am copying this ~40MB/s data stream.
This is the best source I have found on this, but I was hoping there was a more complete reference or proof that such an approach worked out in practice.
This article may be useful:
http://yusufonlinux.blogspot.com/2010/11/data-link-access-and-zero-copy.html
Your best avenues are recvmmsg and increasing RX interrupt coalescing.
http://lwn.net/Articles/334532/
You can move lower and match how Wireshark/tcpdump operate but it becomes futile to attempt any serious processing above it having to decode everything yourself.
At only 30,000 packets per second I wouldn't worry too much about copying packets, those problems arise when dealing with 3,000,000 messages per second.

Do MTU modifications impact both directions?

ifconfig 1.2.3.4 mtu 1492
This will set MTU to 1492 for incoming, outgoing packets or both? I think it is only for incoming
TLDR: Both. It will only transmit packets with a payload length less than or equal to that size. Similarly, it will only accept packets with a payload length within your MTU. If a device sends a larger packet, it should respond with an ICMP unreachable (oversized) message.
The nitty gritty:
Tuning the MTU for your device is useful because other hops between you and your destination may encapsulate your packet in another form (for example, a VPN or PPPoE.) This layer around your packet results in a bigger packet being sent along the wire. If this new, larger packet exceeds the maximum size of the layer, then the packet will be split into multiple packets (in a perfect world) or will be dropped entirely (in the real world.)
As a practical example, consider having a computer connected over ethernet to an ADSL modem that speaks PPPoE to an ISP. Ethernet allows for a 1500 byte payload, of which 8 bytes will be used by PPPoE. Now we're down to 1492 bytes that can be delivered in a single packet to your ISP. If you were to send a full-size ethernet payload of 1500 bytes, it would get "fragmented" by your router and split into two packets (one with a 1492 byte payload, the other with an 8 byte payload.)
The problem comes when you want to send more data over this connection - lets say you wanted to send 3000 bytes: your computer would split this up based on your MTU - in this case, two packets of 1500 bytes each, and send them to your ADSL modem which would then split them up so that it can fulfill its MTU. Now your 3000 byte data has been fragmented into four packets: two with a payload of 1492 bytes and two with a payload of 8 bytes. This is obviously inefficient, we really only need three packets to send this data. Had your computer been configured with the correct MTU for the network, it would have sent this as three packets in the first place (two 1492 byte packets and one 16 byte packet.)
To avoid this inefficiency, many IP stacks flip a bit in the IP header called "Don't Fragment." In this case, we would have sent our first 1500 byte packet to the ADSL modem and it would have rejected the packet, replying with an Internet Control (ICMP) message informing us that our packet is too large. We then would have retried the transmission with a smaller packet. This is called Path MTU discovery. Similarly, a layer below, at the TCP layer, another factor in avoiding fragmentation is the MSS (Maximum Segment Size) option where both hosts reply with the maximum size packet they can transfer without fragmenting. This is typically computed from the MTU.
The problem here arises when misconfigured firewalls drop all ICMP traffic. When you connect to (say) a web server, you build a TCP session and send that you're willing to accept TCP packets based on your 1500 byte MTU (since you're connected over ethernet to your router.) If the foreign web server wanted to send you a lot of data, they would split this into chunks that (when combined with the TCP and IP headers) came out to 1500 byte payloads and send them to you. Your ISP would receive one of these and then try to wrap it into a PPPoE packet to send to your ADSL modem, but it would be too large to send. So it would reply with an ICMP unreachable, which would (in a perfect world) cause the remote computer to downsize its MSS for the connection and retransmit. If there was a broken firewall in the way, however, this ICMP message would never be reached by the foreign web server and this packet would never make it to you.
Ultimately setting your MTU on your ethernet device is desirable to send the right size frames to your ADSL modem (to avoid it asking you to retransmit with a smaller frame), but it's critical to influence the MSS size you send to remote hosts when building TCP connections.
ifconfig ... mtu <value> sets the MTU for layer2 payloads sent out the interface, and will reject larger layer2 payloads received on this interface. You must ensure your MTU matches on both sides of an ethernet link; you should not have mismatched mtu values anywhere in the same ethernet broadcast domain. Note that the ethernet headers are not included in the MTU you are setting.
Also, ifconfig has not been maintained in linux for ages and is old and deprecated; sadly linux distributions still include it because they're afraid of breaking old scripts. This has the very negative effect of encouraging people to continue using it. You should be using the iproute2 family of commands:
[mpenning#hotcoffee ~]$ sudo ip link set mtu 1492 eth0
[mpenning#hotcoffee ~]$ ip link show eth0
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1492 qdisc mq state UP qlen 1000
link/ether 00:1e:c9:cd:46:c8 brd ff:ff:ff:ff:ff:ff
[mpenning#hotcoffee ~]$
Large incoming packets may be dropped based on the interface MTU size.
For example, the default MTU 1500 on
Linux 2.6 CentOS (tested with Ethernet controller: Intel Corporation 80003ES2LAN Gigabit Ethernet Controller (Copper) (rev 01))
drops Jumbo packets >1504. Errors appear in ifconfig and there are rx_long_length_errors indications for this in ethtool -S output.
Increasing MTU indicates Jumbo packets should be supported.
The threshold for when to drop packets based on their size being too large appears to depend on MTU (-4096, -8192, etc.)
Oren
It's the Maximum Transmission Unit, so it definitely sets the outgoing maximum packet size. I'm not sure if will reject incoming packets larger than the MTU.
There is no doubt that MTU configured by ifconfig impacts Tx ip fragmentation, I have no more comments.
But for Rx direction, I find whether the parameter impacts incoming IP packets, it depends. Different manufacturer behaves differently.
I tested all the devices on hand and found 3 cases below.
Test case:
Device0 eth0 (192.168.225.1, mtu 2000)<--ETH cable-->Device1 eth0
(192.168.225.34, mtu MTU_SIZE)
On Device0 ping 192.168.225.34 -s ICMP_SIZE,
Checking how MTU_SIZE impacts Rx of Device1.
case 1:
Device1 = Linux 4.4.0 with Intel I218-LM:
When MTU_SIZE=1500, ping succeeds at ICMP_SIZE=1476, fails at ICMP_SIZE=1477 and above. It seems that there is a PRACTICAL MTU=1504 (20B(IP header)+8B(ICMP header)+1476B(ICMP data)).
When MTU_SIZE=1490, ping succeeds at ICMP_SIZE=1476, fails at ICMP_SIZE=1477 and above, behave the same as MTU_SIZE=1500.
When MTU_SIZE=1501, ping succeeds at ICMP_SIZE=1476, 1478, 1600, 1900. It seems that jumbo frame is switched on once MTU_SIZE is set >1500 and there is no 1504 restriction any more.
case 2:
Device1 = Linux 3.18.31 with Qualcomm Atheros AR8151 v2.0 Gigabit Ethernet:
When MTU_SIZE=1500, ping succeeds at ICMP_SIZE=1476, fails at ICMP_SIZE=1477 and above.
When MTU_SIZE=1490, ping succeeds at ICMP_SIZE=1466, fails at ICMP_SIZE=1467 and above.
When MTU_SIZE=1501, ping succeeds at ICMP_SIZE=1477, fails at ICMP_SIZE=1478 and above.
When MTU_SIZE=500, ping succeeds at ICMP_SIZE=476, fails at ICMP_SIZE=477 and above.
When MTU_SIZE=1900, ping succeeds at ICMP_SIZE=1876, fails at ICMP_SIZE=1877 and above.
This case behaves exactly as Edward Thomson said, except that in my test the PRACTICAL MTU=MTU_SIZE+4.
case 3:
Device1 = Linux 4.4.50 with Raspberry Pi 2 Module B ETH:
When MTU_SIZE=1500, ping succeeds at ICMP_SIZE=1472, fails at ICMP_SIZE=1473 and above. So there is a PRACTICAL MTU=1500 (20B(IP header)+8B(ICMP header)+1472B(ICMP data)) working there.
When MTU_SIZE=1490, behave the same as MTU_SIZE=1500.
When MTU_SIZE=1501, behave the same as MTU_SIZE=1500.
When MTU_SIZE=2000, behave the same as MTU_SIZE=1500.
When MTU_SIZE=500, behave the same as MTU_SIZE=1500.
This case behaves exactly as Ron Maupin said in Why MTU configuration doesn't take effect on receiving direction?.
To sum it all, in real world, after you set ifconfig mtu,
sometimes the Rx IP packts get dropped when exceed 1504 , no matter what MTU value you set (except that the jumbo frame is enabled).
sometimes the Rx IP packts get dropped when exceed the MTU+4 you set on receiving device.
sometimes the Rx IP packts get dropped when exceed 1500, no matter what MTU value you set.
... ...

UDP IP Fragmentation and MTU

I'm trying to understand some behavior I'm seeing in the context of sending UDP packets.
I have two little Java programs: one that transmits UDP packets, and the other that receives them. I'm running them locally on my network between two computers that are connected via a single switch.
The MTU setting (reported by /sbin/ifconfig) is 1500 on both network adapters.
If I send packets with a size < 1500, I receive them. Expected.
If I send packets with 1500 < size < 24258 I receive them. Expected. I have confirmed via wireshark that the IP layer is fragmenting them.
If I send packets with size > 24258, they are lost. Not Expected. When I run wireshark on the receiving side, I don't see any of these packets.
I was able to see similar behavior with ping -s.
ping -s 24258 hostA works but
ping -s 24259 hostA fails.
Does anyone understand what may be happening, or have ideas of what I should be looking for?
Both computers are running CentOS 5 64-bit. I'm using a 1.6 JDK, but I don't really think it's a programming problem, it's a networking or maybe OS problem.
Implementations of the IP protocol are not required to be capable of handling arbitrarily large packets. In theory, the maximum possible IP packet size is 65,535 octets, but the standard only requires that implementations support at least 576 octets.
It would appear that your host's implementation supports a maximum size much greater than 576, but still significantly smaller than the maximum theoretical size of 65,535. (I don't think the switch should be a problem, because it shouldn't need to do any defragmentation -- it's not even operating at the IP layer).
The IP standard further recommends that hosts not send packets larger than 576 bytes, unless they are certain that the receiving host can handle the larger packet size. You should maybe consider whether or not it would be better for your program to send a smaller packet size. 24,529 seems awfully large to me. I think there may be a possibility that a lot of hosts won't handle packets that large.
Note that these packet size limits are entirely separate from MTU (the maximum frame size supported by the data link layer protocol).
I found the following which may be of interest:
Determine the maximum size of a UDP datagram packet on Linux
Set the DF bit in the IP header and send continually larger packets to determine at what point a packet is fragmented as per Path MTU Discovery. Packet fragmentation should then result in a ICMP type 3 packet with code 4 indicating that the packet was too large to be sent without being fragmented.
Dan's answer is useful but note that after headers you're really limited to 65507 bytes.

Resources