What is the procedure for understanding how the FEC mechanism in the Unetstack works, and what algorithm it uses to detect and correct the errors?
To understand, how FEC(Forward Error Correction) is working in the Unetstack, Firstly I tried to introduce errors while transmitting data from sender to receiver. The method being, altering the parameters of modem/channel such as noise levels, depth, powerlevels etc; thinking that these changes would introduce some errors and send erroneous data to the receiver, but it was noted that if we change the parameters after a certain limit, there is no data received on the receiver side instead just a BadFrameNtf was thrown. So, I wasn't able to analyze the FEC mechanism here as no data was received.
It would be really helpful if you could provide recommendations for improving the current technique followed or in offering new ways to introduce errors and analyse the FEC mechanism during data transmission in the Unetstack.
The community version of UnetStack is primarily a network simulator, and abstracts out the physical layer with a modem model that computes the probability of packet loss. In this model, there is no need for any FEC to be implemented per se, although the packet loss probability may include a notional FEC.
The community version of UnetStack audio implements a ½-rate interleaved convolution code as the only available FEC. You can see that by typing phy[1].fecList or phy[2].fecList on the modem shell:
> phy[1].fecList
[iconv-1/2]
The commercial versions of UnetStack use more performant FECs including LDPC, BCH, etc, for various code rates (differing correction capability). If you own a modem with UnetStack, you will have access to those. Example:
> phy[1].fecList
[ldpcv3-1/1, ldpc-1/1, ldpc-2/3, iconv-1/2, janus-spec, janus-ref, ldpc-1/2, bch-1/3, ldpcv3-1/3, ldpc-1/3, bch-1/4, ldpcv3-1/4, ldpc-1/4, bch-1/5, ldpcv3-1/5, ldpc-1/5, ldpcv3-1/6, ldpc-1/6]
I'm working on a Mesos framework to run some jobs and it seems like a great opportunity to learn about making a highly available system. To that end, I'm doing some reading on distributed systems and I made the mistake of visiting wikipedia.
The passage in question is talking about a principle of HA engineering:
Reliable crossover. In multithreaded systems, the crossover point itself tends to
become a single point of failure. High availability engineering must provide for reliable
crossover.
My google-fu teaches me three things:
1) audio crossover devices split a single input into multiple outputs
2) genetic algorithms use crossover to combine solutions
3) buzzwordy white papers all copied from this wikipedia article :/
My question: What does a 'crossover point' mean in this context, and why is it single point of failure?
Reliable crossover in this context means:
The ability to switch from a node X (which is broken somehow) to a Node Y without losing data.
Non-reliable HA-database example:
Copy the database every 5 minutes to a passive node. => Here you can lose up to 5 minutes of data.
=> Here the copy action is the single point of failure.
Reliable HA-database example:
Setting up data replication where (per example) your insert statement only returns as "executed OK" when the transaction is copied to the secondary server.
(yes: data replication is more complex than this, this is a simplified example in the context of the question)
Actually arrival is pretty simple, tag gets into a range of receivers antenna, but the departure is what is causing the problems.
First some information about the setup we have.
Tags:
They work at 433Mhz, every 1.5 seconds they transmit a "heartbeat", on movement they go into a transmission burst mode which lasts for as long as they are moving.
They transmit their ID, transmission sequence number(1 to 255, repeating over and over), for how long they have been in use, and input from motion sensor, if any. We have no control over them whatsoever. They will continue doing what they do until their battery dies. And they are sealed shut.
Receiver forwards all that data + signal strength of a tag to our software. Software can work with several receivers. Currently we are using omnidirectional antennas.
How can we be sure that the tag has departed from premises?
Problems:
Sometimes two or more tags transmit "heartbeat" at the same time and no signal is received. With number of tags increasing these collisions happen more often, this problem is solved by tags randomly changing their heartbeat rate (in several milliseconds) to avoid collisions. Problem is I can't rely on tags not "checking in" for a certain period of time as sign of departure. It could be timeout because of collisions. Because of these collisions we cannot rely that every "heartbeat" will be received.
Tag manufacturer advised that we use two receivers and set them up as a gate for tags to pass through. Based on the order of tags passing through "gates" we can tell in which direction they are going. The problem with our omnidirectional antennas is that sometimes tag signal bounces of building and then arrives to receiver. So based on signal strength it looks like its farther away then it is.
Does anybody have a solution of what we can do to have a reliable way of determining if tags are coming or leaving? Also we can setup antennas in different way as well.
I wrote the software that interprets data from receivers, so that part can be manipulated in any way. But I'm out of ideas of how to interpret information to get reliability we need.
Right now the only idea is to try out with directional antennas? But I would like to tryout all the options with the current equipment we have.
Also any literature suggestion that deals with active RFID tags is more than welcome, most of books I've found deal with passive tag solutions.
As a top level statement, if you need to track items leaving your site, your RFID technology is probably the wrong one. The technology you have is better suited to the positional tracking tags within a large area - eg a factory floor. Notwithstanding the above, here is my take:
A good approach to active RFID is to break your area down into zones that are tied to your business processes, for example:
Warehouse
Loading bay
Packing
Entry of a tag into a zone represents the start of a new process or perhaps the end of a process the tag is currently in. For example, moving from warehouse to the packing represents assembling a shipment, and movement into the loading bay initiates a shipment.
The crux of many RFID implementations is the installation and configuration of the RFID intrastructure to:
Map tag -> asset (which you have done)
Map tag read -> zone (and by inference asset -> zone)
Map movements between zones to steps in a business processes (and therefore understand when an asset leaves the site, your goal)
There are a number of considerations: the physical characteristics of 433MHz signals, position of antennae, sensitivity of antennae and some tricks that some vendors have. After an optimal site configuration, then you may need to have some processing tricks on the tag reads that will pour in.
Dirty data
Always keep in mind that tag read data is dirty - that RF interference (from unshielded motors, electric wiring, etc), weather conditions and physical manipulation of tags (eg covering with metal) happen all the time.
RSSI's are like stock tickers - there is a lot of random/microeconomic noise on top of broad macroeconomic trends. To interpret movement, compute the linear regression of groups of reads rather then rely on a specific read's RSSI.
If you do see a tag broadcasting with a high RSSI, which then falls to medium then low and then disappears, you really can interpret that as the tag is leaving the range of the receiver. Is that off-site? Well, you need to consider the site's layout (the zones) and the positioning of receivers within the zones.
TriangulationTrilateration
EDIT I had incorrectly used the term 'triangulation'. This refers to determining the position of something by known the angle it subtends from two or three known locations. In RFID, you use the distance and as such it is called 'trilateration'.
In my experience, vendors selling the tag technology you describe have server software that determines the absolute position of the tags using the received RSSI. You should be able to obtain the position of the tag within 1-10m using such software. Determining if the tag is moving off-site is then easy.
To code this yourself:
First, each tag is pinging away when moving. These pings hit the receivers at almost the same time and sent to the server. However the messages can sometimes arrive out of order or interleaved with earlier and later reads from other receivers. To help correlate pings, the ping contains a sequence number. You are looking for tag reads from the same tag, with the same sequence number, received by three (or more) receivers. If more than three, pick the three with the largest RSSI.
The distance is approximated from RSSI. This is not linear and subject to non-trivial random variation. A quick google turns up:
Given three approximate distances from three known points (the receivers' locations), you can then resolve the approximate position of the tag using Trilateration using 3 latitude and longitude points, and 3 distances.
Now you have the absolute position of the tag. You can use these positions to track the absolute movement of the tag.
To make this useful, you should position receivers so that you can reliably detect tags right up to the physical site boundaries. You should then determine a 'geofence' around your site, within receiver range. I would write a business rule that states:
If the last known position of a tag was outside the geofence, and
A tag read from the tag has not been detected in (say) 10s, then
Declare the tag has left the site.
By using the trilateration and geofence, you can focus the business logic on only those tags close to going awol. If you fail to receive your 1.5s ping only a few times from such a tag, it's highly likely that the tag has gone outside your receiver's range, and therefore off-site.
You're already aware that tag reads can sometimes come from reflections. If you have a lot of these, then your trilateration will be pretty poor. So this method works best when there are fairly large open spaces and minimal reflectors.
Some RFID vendors have all this built into their servers - processing this by writing your own code is (clearly) non-trivial.
Zone design using wide-area receivers
Logical design of zones can help the business logic layer. For example, suppose you have two zones (A and B) with two receivers (1 and 2):
A B
+----------+----------+
| | |
| 1 | 2 |
| | |
+----------+----------+
If you get tag reads from the tag at receiver 1, then one at receiver 2, how do you interpret that? Did tag T move into zone B, or just get a read at the extreme range of 2?
If you get a later read at 1, did the tag move back, or did it never move?
A better physical solution is:
A B
+----------+----------+
| | |
| 1 2 3 |
| | |
+----------+----------+
In this approach, a tag moving from A to B would get reads from the following receivers:
1 1 1 2 1 2 2 3 2 2 3 2 3 3 3 3 3
-------> time
From a programming logic point of view, a movement from A -> B has to traverse reads 1 -> 2 -> 3 (even though there is a lot of jitter). It gets even easier to interpret when you combine with RSSI.
Portal design with directional receivers
You can create quite a good portal using two directional receivers (you will need to spend some time configuring the antenna and sensitivity carefully). Mount a receiver well above the door on both sides. Below is a schematic from the side. R1 and R2 are the receivers (and the rough read field is shown), and on the left is a worker pushing an asset through the door:
----> direction of motion
-------------------+----------------
R1 | R2
/ \ | / \
o / \ / \
|-++ / \ / \
|\++ / \ / \
------------------------------------------
You should get a pattern of reads like this:
<nothing> 1 1 1 1 1 12 1 21 2 12 2 1 2 2 2 2 2 <nothing>
-------> time
This indicates a movement from receiver 1 to receiver 2.
"Signposts"
Savi implementations often use "sign posts" to assist with location. The sign post emits beam that illuminates a small area (like a doorway) in a 123KHz beam. The signpost also transmits a unique number identifying itself (left door might be 1, while the right door might be 2). When the tag passes through the beam, it wakes up and re-broadcasts the number. The reader now knows which door the tag passed through.
Watch out for any metal in the surrounding area. 123KHz travels extremely well down rebar in concrete walls, metal fences and rail tracks. We once had tags reporting themselves hundreds of meters from a signpost due to such effects.
With this approach you can implement a portal much like you would for passive.
Simulating signposts
If you don't have the ability to use signposts, then there is a dirty hack:
Stick a passive RFID tag to your active RFID tag
Install a passive RFID reader on each doorway
Passive RFID is actually very good in restricted spaces, so this implementation can work very well. This solution may be the same cost (or cheaper) than with your active RFID vendor.
If you're clever, you can use the EPC GIAI namespace for the passive tag ID and so burn it with the active tag ID. Both active and passive tags would then be identically named.
Physical considerations
433MHz tags have some interesting characteristics. Well-constructed receivers can get a read of tags within about 100m, which is a long way for RFID. In addition, 433MHz wraps itself around obstacles very well, especially metal ones. We could even read tags in the boot (trunk) of a car travelling at 50km/h - the signal propagates from the rubber seal.
When installing a reader to monitor a zone, you need to adjust its location and sensitivity very carefully to maximize the reads from tags within your zone, but also to minimize reads from outside your zone. This might be done in HW or in SW configuration (like dropping all reads below a particular RSSI).
One idea might be to move the receiver away from the area where your tags are exiting as in the layout below (R is the reader):
+-------------------------+-----------+
| Warehouse | Exit |
| . |
| .
| R . R --->
| .
| . |
| | |
+-------------------------+-----------+
It pays to do a RF site survey and spend enough time to properly understand how tags and readers work in an area. Getting the physical installation right is critical.
Other thing to do is to consider physical constrictions such as corridors and doorways and treat them as choke-points - map logical zones to them. Put a reader (with directional receiver tuned to cover the constriction) and lower sensitivity in to cover the constriction.
What no tag-reads actually means
If my experience of RFID has taught me anything, it is that you can get spurious reads at any time, and you need to treat everything with a degree of suspicion. For example, you might have a few seconds of missing reads from a given tag - this can mean anything:
A user accidentally putting a metal tin over the tag
A fork lift truck getting between tag and reader
An RF collision
A momentary network congestion
The battery dying or fading out (remember to check the low-battery flag in tag reads and ensure the business has a process to replace old tags).
Tag destroyed by a pallet being pushed into it
Stollen by someone wanting to resell it for scrap (Not a joke - this actually happened)
Oh yeah, it may be that the tag moved off-site.
If the tag has not been heard of in, say, 5 minutes, odds are that it's off site.
In most business processes that you would use this active tag technology for, a short delay before the system decides the tag is off-site is acceptable.
Conclusions
Site survey: spend time experimenting with readers in different locations. Walk around the site with a tag and see what reads you are actually getting. Use this to:
Logically segment your site into zones and locate receivers to most accurately position tags in zones
It's easier to determine movement between zones using several receivers; if possible, instrument physical constrictions such as doors and corridors as portals. As part of your RFID implementation, you might even want to install new walls or fences to create such constrictions. Consider a passive RFID for portals.
Beware of metal, especially large expanses of it.
You have dirty data. You need to compute linear regressions on the RSSIs to spot trends over short periods; you need to be able to forgive a small number of missing tag reads
Make sure that there are business processes to handle dying batteries and sudden disappearances of tags.
Above all, this problem is best solved by getting the receivers installed in the best locations and configuring them carefully, then getting the software right. Trying to solve a bad site installation with software can cause premature ageing.
Disclosure: I worked 8 years for a major active RFID vendor.
Using directional antennas sounds like it may be a more reliable option, although this obviously depends on the precise layout of your premises.
As far as using your current omnidirectional receivers, there are a couple of options I can think of:
First one, and likely easiest, would be to collect some data on the average 'check-in' times you are seeing for on-site tags, possibly as a function of the number of on-site tags (if the number is likely to change dramatically - as your collision frequency will be related to the number of tags present). You can then analyse this data to see if you can choose a suitable cut-off time, after which you declare that a tag is no longer present.. Obviously exactly what cut-off you choose will depend on the data you see and your willingness to accept false positives - it could also be that any acceptable cut-off time lies outside your 3 minute window (although I suspect that if that is the case then your 3 minute window may not be viable).
Another, more difficult, option (or group of options more like), would be to utilise more historical information about each tag - for instance, look for tags whose signal strength gradually decreases and then disappears, or tags whose check-in time changes drastically, or perhaps utilise multiple receivers and look for patterns between receivers - such as tags which are only seen by one receiver and then disappear, or distinctive patterns of signal strength (indicating bearing) between receivers as tags go off-site.
Obviously the second option is really about looking for patterns, both over time and between receivers, and is likely to be much more labour (and analysis) intensive to implement. If you are able to capture enough good quality data you might be able to utilise machine-learning algorithms to identify relevant patterns.
We do this every day.
First question is: "How many tags do you have at a reader at any given time?". Collisions are more rare than you might think, but they do happen and tag over-population can be easily determined.
Our Software was written and might be using the same readers and tags that you are using. We set reader timeouts to determine when a tag is "away" or "offsite"; usually 30 seconds without the tag being read. Arrival of course is instantaneous when a tag is detected at the reader, then the tag is flagged "onsite".
We also have the option to use multiple readers; one at a gate and another on the parking lot or in the building for example. The gate reader has a short timeout. If a tag passes the gate reader, it is red and then times out very quickly to flag the tag as "offsite". If a tag is then read by any other reader, the tag is then considered "onsite".
I can post links if you think it would be helpful, else you can search for RFID Track. It's iOS App and there are settings posted for a demo server.
Peter
I'm new to networking in general and I read about this protocol called Aloha, and I would like to make a simple simulator for the Pure version of it.
Although I understand the concepts, I find it difficult to start.
Basically we have a N senders in the network. Each sender wants to send a packet. Now each sender doesn't care if the network is busy or under occupation by some other sender. If it wants to send data, it just sends it.
The problem is that if 2 senders send some data at the same time, then they will both collide and thus both packets will be destroyed.
Since they are destroyed the two senders will need to send again the same packets.
I understand this simple concept, the difficulty is, how to modulate this using probabilities.
Now, I need to find out the throughput which is the rate of (successful) transmission of frames.
Before going any further, we have to make some assumptions:
All frames have the same length.
Stations cannot generate a frame while transmitting or trying to transmit. (That is, if a station keeps trying to send a frame, it cannot be allowed to generate more frames to send.)
The population of stations attempts to transmit (both new frames and old frames that collided) according to a Poisson distribution.
I can't really understand the third assumption, how will I apply this probability in aloha?
I can't find a single code online in order to get an idea how this would be done...
here is some further information on this protocol:
http://en.wikipedia.org/wiki/ALOHAnet#Pure_ALOHA
I think you have to split the time into intervals; in each interval a certain number of stations attempts to transmit. This number is the number of events occurring in a fixed interval or time according to http://en.wikipedia.org/wiki/Poisson_distribution.
You have to model it according to the Poisson distribution.
My 2 cents, hope this helps
I just had a strange conversation with a man who was trying to explain to me that it is impossible for two healthy networks to communicate at each-other over the ocean without significant bandwidth loss.
For example - if you have a machine connected at 100Mb/sec here http://www.hetzner.de/en/hosting/unternehmen/rechenzentrum attempt to communicate to a machine in the US with exactly the same setup you'd only achieve a fraction of the original connection speed. This would be true no matter how you distributed the load - the total loss over distance would be the same. "Full capacity" between the US and Germany would be less than half of what it would be to a data center a mile from the originator with the same setup.
If this is true that means my entire understanding of how packets work is wrong. I mean, if there's no packet loss why would there be any issue other than latency? I'm trying to understand his argument but am at a loss. He seems intelligent and 100% sure of his information. It was very difficult to understand because he explained data like a river and I was thinking of it as a series of packets.
Can someone explain to me what I'm missing, or am i just dealing with a madman in a position of authority and confidence?
He could be referring to the number of packets you would be able to have 'in flight' at any one time.
Take a look at Wikipedia's entry on Bandwidth Delay Product for some more information on this:
http://en.wikipedia.org/wiki/Bandwidth-delay_product
That said, depending on the link you have between those two places, then I don't think latency would be that much of an issue to cause problems with this (assuming a fibre connection, not satellite).
He could also be referring to the fact that there would be a number of round trips to setup a TCP connection so the apparent speed to an end user who might be setting up lots of small connections (web browsing) might be less.
-Matt