I'm trying to follow the solution from the top answer here to load an object detection model from the .pth file.
os.environ['TORCH_HOME'] = '../input/torchvision-fasterrcnn-resnet-50/' #setting the environment variable
model = detection.fasterrcnn_resnet50_fpn(pretrained=False).to(DEVICE)
I get the following error
NotADirectoryError: [Errno 20] Not a directory: '../input/torchvision-fasterrcnn-resnet-50/fasterrcnn_resnet50_fpn_coco-258fb6c6.pth/hub'
google did not reveal an answer to the error and I don't exactly know what it means except for the obvious (that folder 'hub' is missing).
Do I have to unpack or create a folder?
I have tried loading the weights but I get the same error message.
this is how I load the model
model = detection.fasterrcnn_resnet50_fpn(pretrained=True)
checkpoint = torch.load('../input/torchvision-fasterrcnn-resnet-50/model.pth.tar')
model.load_state_dict(checkpoint['state_dict'])
thank you for your help!
Full Error Trace:
gaierror: [Errno -3] Temporary failure in name resolution
During handling of the above exception, another exception occurred:
URLError Traceback (most recent call last)
/tmp/ipykernel_42/1218627017.py in <module>
1 # to load
----> 2 model = detection.fasterrcnn_resnet50_fpn(pretrained=True)
3 checkpoint = torch.load('../input/torchvision-fasterrcnn-resnet-50/model.pth.tar')
4 model.load_state_dict(checkpoint['state_dict'])
/opt/conda/lib/python3.7/site-packages/torchvision/models/detection/faster_rcnn.py in fasterrcnn_resnet50_fpn(pretrained, progress, num_classes, pretrained_backbone, trainable_backbone_layers, **kwargs)
360 if pretrained:
361 state_dict = load_state_dict_from_url(model_urls['fasterrcnn_resnet50_fpn_coco'],
--> 362 progress=progress)
363 model.load_state_dict(state_dict)
364 return model
/opt/conda/lib/python3.7/site-packages/torch/hub.py in load_state_dict_from_url(url, model_dir, map_location, progress, check_hash, file_name)
553 r = HASH_REGEX.search(filename) # r is Optional[Match[str]]
554 hash_prefix = r.group(1) if r else None
--> 555 download_url_to_file(url, cached_file, hash_prefix, progress=progress)
556
557 if _is_legacy_zip_format(cached_file):
/opt/conda/lib/python3.7/site-packages/torch/hub.py in download_url_to_file(url, dst, hash_prefix, progress)
423 # certificates in older Python
424 req = Request(url, headers={"User-Agent": "torch.hub"})
--> 425 u = urlopen(req)
426 meta = u.info()
427 if hasattr(meta, 'getheaders'):
/opt/conda/lib/python3.7/urllib/request.py in urlopen(url, data, timeout, cafile, capath, cadefault, context)
220 else:
221 opener = _opener
--> 222 return opener.open(url, data, timeout)
223
224 def install_opener(opener):
/opt/conda/lib/python3.7/urllib/request.py in open(self, fullurl, data, timeout)
523 req = meth(req)
524
--> 525 response = self._open(req, data)
526
527 # post-process response
/opt/conda/lib/python3.7/urllib/request.py in _open(self, req, data)
541 protocol = req.type
542 result = self._call_chain(self.handle_open, protocol, protocol +
--> 543 '_open', req)
544 if result:
545 return result
/opt/conda/lib/python3.7/urllib/request.py in _call_chain(self, chain, kind, meth_name, *args)
501 for handler in handlers:
502 func = getattr(handler, meth_name)
--> 503 result = func(*args)
504 if result is not None:
505 return result
/opt/conda/lib/python3.7/urllib/request.py in https_open(self, req)
1391 def https_open(self, req):
1392 return self.do_open(http.client.HTTPSConnection, req,
-> 1393 context=self._context, check_hostname=self._check_hostname)
1394
1395 https_request = AbstractHTTPHandler.do_request_
/opt/conda/lib/python3.7/urllib/request.py in do_open(self, http_class, req, **http_conn_args)
1350 encode_chunked=req.has_header('Transfer-encoding'))
1351 except OSError as err: # timeout error
-> 1352 raise URLError(err)
1353 r = h.getresponse()
1354 except:
URLError: <urlopen error [Errno -3] Temporary failure in name resolution>
If you are loading a pretrained network, you don't need to load the model from torchvision pretrained (as in pretrained by torchvision on ImageNet using pretrained=True). You have two options:
Either set pretrained=False and load you weights using:
checkpoint = torch.load('../input/torchvision-fasterrcnn-resnet-50/model.pth.tar')
model.load_state_dict(checkpoint['state_dict'])
Or if you decide to change TORCH_HOME (which is not ideal) you need to keep the same directory structure Torchvision has which would be:
inputs/hub/checkpoints/fasterrcnn_resnet50_fpn_coco-258fb6c6.pth
In practice, you wouldn't change TORCH_HOME just to load one model.
I found the solution digging deep into github, to the problem, which is a little hidden.
detection.()
has a default argument besides pretrained, it's called pretrained_backbone which by default is set to true, which if True sets the models to download from a dictionary path of urls.
this will work:
detection.fasterrcnn_resnet50_fpn(pretrained=False, pretrained_backbone = False, num_classes = 91).
then load the model as usual.
num_classes is expected, in the docs it's a default = 91 but in github i saw it as None, which is why I added it here for saftey.
Related
I am following this article to find the text similarity.
The code I have is this:
from sentence_transformers import SentenceTransformer
from tqdm import tqdm
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
import pandas as pd
documents = [
"Vodafone Wins ₹ 20,000 Crore Tax Arbitration Case Against Government",
"Voda Idea shares jump nearly 15% as Vodafone wins retro tax case in Hague",
"Gold prices today fall for 4th time in 5 days, down ₹6500 from last month high",
"Silver futures slip 0.36% to Rs 59,415 per kg, down over 12% this week",
"Amazon unveils drone that films inside your home. What could go wrong?",
"IPHONE 12 MINI PERFORMANCE MAY DISAPPOINT DUE TO THE APPLE B14 CHIP",
"Delhi Capitals vs Chennai Super Kings: Prithvi Shaw shines as DC beat CSK to post second consecutive win in IPL",
"French Open 2020: Rafael Nadal handed tough draw in bid for record-equaling 20th Grand Slam"
]
model = SentenceTransformer('sentence-transformers/bert-base-nli-mean-tokens')
I get an error when running the above code:
Full:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
~\anaconda3\envs\py3_nlp\lib\tarfile.py in nti(s)
188 s = nts(s, "ascii", "strict")
--> 189 n = int(s.strip() or "0", 8)
190 except ValueError:
ValueError: invalid literal for int() with base 8: 'ld_tenso'
During handling of the above exception, another exception occurred:
InvalidHeaderError Traceback (most recent call last)
~\anaconda3\envs\py3_nlp\lib\tarfile.py in next(self)
2298 try:
-> 2299 tarinfo = self.tarinfo.fromtarfile(self)
2300 except EOFHeaderError as e:
~\anaconda3\envs\py3_nlp\lib\tarfile.py in fromtarfile(cls, tarfile)
1092 buf = tarfile.fileobj.read(BLOCKSIZE)
-> 1093 obj = cls.frombuf(buf, tarfile.encoding, tarfile.errors)
1094 obj.offset = tarfile.fileobj.tell() - BLOCKSIZE
~\anaconda3\envs\py3_nlp\lib\tarfile.py in frombuf(cls, buf, encoding, errors)
1034
-> 1035 chksum = nti(buf[148:156])
1036 if chksum not in calc_chksums(buf):
~\anaconda3\envs\py3_nlp\lib\tarfile.py in nti(s)
190 except ValueError:
--> 191 raise InvalidHeaderError("invalid header")
192 return n
InvalidHeaderError: invalid header
During handling of the above exception, another exception occurred:
ReadError Traceback (most recent call last)
~\anaconda3\envs\py3_nlp\lib\site-packages\torch\serialization.py in _load(f, map_location,
pickle_module, **pickle_load_args)
594 try:
--> 595 return legacy_load(f)
596 except tarfile.TarError:
~\anaconda3\envs\py3_nlp\lib\site-packages\torch\serialization.py in legacy_load(f)
505
--> 506 with closing(tarfile.open(fileobj=f, mode='r:', format=tarfile.PAX_FORMAT)) as
tar, \
507 mkdtemp() as tmpdir:
~\anaconda3\envs\py3_nlp\lib\tarfile.py in open(cls, name, mode, fileobj, bufsize, **kwargs)
1590 raise CompressionError("unknown compression type %r" % comptype)
-> 1591 return func(name, filemode, fileobj, **kwargs)
1592
~\anaconda3\envs\py3_nlp\lib\tarfile.py in taropen(cls, name, mode, fileobj, **kwargs)
1620 raise ValueError("mode must be 'r', 'a', 'w' or 'x'")
-> 1621 return cls(name, mode, fileobj, **kwargs)
1622
~\anaconda3\envs\py3_nlp\lib\tarfile.py in __init__(self, name, mode, fileobj, format, tarinfo, dereference, ignore_zeros, encoding, errors, pax_headers, debug, errorlevel, copybufsize)
1483 self.firstmember = None
-> 1484 self.firstmember = self.next()
1485
~\anaconda3\envs\py3_nlp\lib\tarfile.py in next(self)
2310 elif self.offset == 0:
-> 2311 raise ReadError(str(e))
2312 except EmptyHeaderError:
ReadError: invalid header
During handling of the above exception, another exception occurred:
RuntimeError Traceback (most recent call last)
~\anaconda3\envs\py3_nlp\lib\site-packages\transformers\modeling_utils.py in from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs)
1210 try:
-> 1211 state_dict = torch.load(resolved_archive_file, map_location="cpu")
1212 except Exception:
~\anaconda3\envs\py3_nlp\lib\site-packages\torch\serialization.py in load(f, map_location, pickle_module, **pickle_load_args)
425 pickle_load_args['encoding'] = 'utf-8'
--> 426 return _load(f, map_location, pickle_module, **pickle_load_args)
427 finally:
~\anaconda3\envs\py3_nlp\lib\site-packages\torch\serialization.py in _load(f, map_location, pickle_module, **pickle_load_args)
598 # .zip is used for torch.jit.save and will throw an un-pickling error here
--> 599 raise RuntimeError("{} is a zip archive (did you mean to use torch.jit.load()?)".format(f.name))
600 # if not a tarfile, reset file offset and proceed
RuntimeError: C:\Users\user1/.cache\torch\sentence_transformers\sentence-transformers_bert-base-nli-mean-tokens\pytorch_model.bin is a zip archive (did you mean to use torch.jit.load()?)
During handling of the above exception, another exception occurred:
OSError Traceback (most recent call last)
<ipython-input-3-bba56aac60aa> in <module>
----> 1 model = SentenceTransformer('sentence-transformers/bert-base-nli-mean-tokens')
~\anaconda3\envs\py3_nlp\lib\site-packages\sentence_transformers\SentenceTransformer.py in __init__(self, model_name_or_path, modules, device, cache_folder)
88
89 if os.path.exists(os.path.join(model_path, 'modules.json')): #Load as SentenceTransformer model
---> 90 modules = self._load_sbert_model(model_path)
91 else: #Load with AutoModel
92 modules = self._load_auto_model(model_path)
~\anaconda3\envs\py3_nlp\lib\site-packages\sentence_transformers\SentenceTransformer.py in _load_sbert_model(self, model_path)
820 for module_config in modules_config:
821 module_class = import_from_string(module_config['type'])
--> 822 module = module_class.load(os.path.join(model_path, module_config['path']))
823 modules[module_config['name']] = module
824
~\anaconda3\envs\py3_nlp\lib\site-packages\sentence_transformers\models\Transformer.py in load(input_path)
122 with open(sbert_config_path) as fIn:
123 config = json.load(fIn)
--> 124 return Transformer(model_name_or_path=input_path, **config)
125
126
~\anaconda3\envs\py3_nlp\lib\site-packages\sentence_transformers\models\Transformer.py in __init__(self, model_name_or_path, max_seq_length, model_args, cache_dir, tokenizer_args, do_lower_case, tokenizer_name_or_path)
27
28 config = AutoConfig.from_pretrained(model_name_or_path, **model_args, cache_dir=cache_dir)
---> 29 self.auto_model = AutoModel.from_pretrained(model_name_or_path, config=config, cache_dir=cache_dir)
30 self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name_or_path if tokenizer_name_or_path is not None else model_name_or_path, cache_dir=cache_dir, **tokenizer_args)
31
~\anaconda3\envs\py3_nlp\lib\site-packages\transformers\models\auto\auto_factory.py in from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs)
393 if type(config) in cls._model_mapping.keys():
394 model_class = _get_model_class(config, cls._model_mapping)
--> 395 return model_class.from_pretrained(pretrained_model_name_or_path, *model_args, config=config, **kwargs)
396 raise ValueError(
397 f"Unrecognized configuration class {config.__class__} for this kind of AutoModel: {cls.__name__}.\n"
~\anaconda3\envs\py3_nlp\lib\site-packages\transformers\modeling_utils.py in from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs)
1212 except Exception:
1213 raise OSError(
-> 1214 f"Unable to load weights from pytorch checkpoint file for '{pretrained_model_name_or_path}' "
1215 f"at '{resolved_archive_file}'"
1216 "If you tried to load a PyTorch model from a TF 2.0 checkpoint, please set from_tf=True. "
OSError: Unable to load weights from pytorch checkpoint file for 'C:\Users\user1/.cache\torch\sentence_transformers\sentence-transformers_bert-base-nli-mean-tokens\' at 'C:\Users\user1/.cache\torch\sentence_transformers\sentence-transformers_bert-base-nli-mean-tokens\pytorch_model.bin'If you tried to load a PyTorch model from a TF 2.0 checkpoint, please set from_tf=True.
Short:
OSError: Unable to load weights from pytorch checkpoint file for 'C:\Users\user1/.cache\torch\sentence_transformers\sentence-transformers_bert-base-nli-mean-tokens' at 'C:\Users\user1/.cache\torch\sentence_transformers\sentence-transformers_bert-base-nli-mean-tokens\pytorch_model.bin'If you tried to load a PyTorch model from a TF 2.0 checkpoint, please set from_tf=True.
I do have the pytorch_model.bin in the '.cache\torch\sentence_transformers\sentence-transformers_bert-base-nli-mean-tokens' folder.
Why am I getting this error?
The reason for the error seems to be that the pre-trained model weight files are not available or loadable.
You can try that one to load pretrained model weight file:
from transformers import AutoModel
model = AutoModel.from_pretrained('sentence-transformers/bert-base-nli-mean-tokens')
Reference: https://huggingface.co/sentence-transformers/bert-base-nli-mean-tokens
Also, the model's hugging face page says:
This model is deprecated. Please don't use it as it produces sentence embeddings of low quality. You can find recommended sentence embedding models here: SBERT.net - Pretrained Models
Maybe you might want to take a look.
You may need to use the model without sentence_transformers.
The following code is tweaked from https://www.sbert.net/examples/applications/computing-embeddings/README.html
As I understand it, from the exception you need to pass from_tf=True to AutoModel.
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1)
sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9)
return sum_embeddings / sum_mask
#Sentences we want sentence embeddings for
sentences = ['This framework generates embeddings for each input sentence',
'Sentences are passed as a list of string.',
'The quick brown fox jumps over the lazy dog.']
#Load AutoModel from huggingface model repository
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/bert-base-nli-mean-tokens')
model = AutoModel.from_pretrained('sentence-transformers/bert-base-nli-mean-tokens',from_tf=True)
#Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, max_length=128, return_tensors='pt')
#Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
#Perform pooling. In this case, mean pooling
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
I am trying to replicate this experiment presented in this webpage https://adversarial-ml-tutorial.org/adversarial_examples/
I got the jupyter notebook and loaded in my localhost and open it using Jupiter notebook. When I run the following code to get the dataset using the following code:
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
mnist_train = datasets.MNIST("../data", train=True, download=True, transform=transforms.ToTensor())
mnist_test = datasets.MNIST("../data", train=False, download=True, transform=transforms.ToTensor())
train_loader = DataLoader(mnist_train, batch_size = 100, shuffle=True)
test_loader = DataLoader(mnist_test, batch_size = 100, shuffle=False)
and I get the following error:
Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz to ../data\MNIST\raw\train-images-idx3-ubyte.gz
0/? [00:00<?, ?it/s]
---------------------------------------------------------------------------
HTTPError Traceback (most recent call last)
<ipython-input-15-e6f62798f426> in <module>
2 from torch.utils.data import DataLoader
3
----> 4 mnist_train = datasets.MNIST("../data", train=True, download=True, transform=transforms.ToTensor())
5 mnist_test = datasets.MNIST("../data", train=False, download=True, transform=transforms.ToTensor())
6 train_loader = DataLoader(mnist_train, batch_size = 100, shuffle=True)
~\Anaconda3\lib\site-packages\torchvision\datasets\mnist.py in __init__(self, root, train, transform, target_transform, download)
77
78 if download:
---> 79 self.download()
80
81 if not self._check_exists():
~\Anaconda3\lib\site-packages\torchvision\datasets\mnist.py in download(self)
144 for url, md5 in self.resources:
145 filename = url.rpartition('/')[2]
--> 146 download_and_extract_archive(url, download_root=self.raw_folder, filename=filename, md5=md5)
147
148 # process and save as torch files
~\Anaconda3\lib\site-packages\torchvision\datasets\utils.py in download_and_extract_archive(url, download_root, extract_root, filename, md5, remove_finished)
254 filename = os.path.basename(url)
255
--> 256 download_url(url, download_root, filename, md5)
257
258 archive = os.path.join(download_root, filename)
~\Anaconda3\lib\site-packages\torchvision\datasets\utils.py in download_url(url, root, filename, md5)
82 )
83 else:
---> 84 raise e
85 # check integrity of downloaded file
86 if not check_integrity(fpath, md5):
~\Anaconda3\lib\site-packages\torchvision\datasets\utils.py in download_url(url, root, filename, md5)
70 urllib.request.urlretrieve(
71 url, fpath,
---> 72 reporthook=gen_bar_updater()
73 )
74 except (urllib.error.URLError, IOError) as e: # type: ignore[attr-defined]
~\Anaconda3\lib\urllib\request.py in urlretrieve(url, filename, reporthook, data)
245 url_type, path = splittype(url)
246
--> 247 with contextlib.closing(urlopen(url, data)) as fp:
248 headers = fp.info()
249
~\Anaconda3\lib\urllib\request.py in urlopen(url, data, timeout, cafile, capath, cadefault, context)
220 else:
221 opener = _opener
--> 222 return opener.open(url, data, timeout)
223
224 def install_opener(opener):
~\Anaconda3\lib\urllib\request.py in open(self, fullurl, data, timeout)
529 for processor in self.process_response.get(protocol, []):
530 meth = getattr(processor, meth_name)
--> 531 response = meth(req, response)
532
533 return response
~\Anaconda3\lib\urllib\request.py in http_response(self, request, response)
639 if not (200 <= code < 300):
640 response = self.parent.error(
--> 641 'http', request, response, code, msg, hdrs)
642
643 return response
~\Anaconda3\lib\urllib\request.py in error(self, proto, *args)
567 if http_err:
568 args = (dict, 'default', 'http_error_default') + orig_args
--> 569 return self._call_chain(*args)
570
571 # XXX probably also want an abstract factory that knows when it makes
~\Anaconda3\lib\urllib\request.py in _call_chain(self, chain, kind, meth_name, *args)
501 for handler in handlers:
502 func = getattr(handler, meth_name)
--> 503 result = func(*args)
504 if result is not None:
505 return result
~\Anaconda3\lib\urllib\request.py in http_error_default(self, req, fp, code, msg, hdrs)
647 class HTTPDefaultErrorHandler(BaseHandler):
648 def http_error_default(self, req, fp, code, msg, hdrs):
--> 649 raise HTTPError(req.full_url, code, msg, hdrs, fp)
650
651 class HTTPRedirectHandler(BaseHandler):
HTTPError: HTTP Error 403: Forbidden
Any help solving this issue is much appreciated.
I also can download the dataset directly from the link but then I don't know how to use that!
Yes it's a known bug: https://github.com/pytorch/vision/issues/3500
The possible solution can be to patch MNIST download method.
But it requires wget to be installed.
For Linux:
sudo apt install wget
For Windows:
choco install wget
import os
import subprocess as sp
from torchvision.datasets.mnist import MNIST, read_image_file, read_label_file
from torchvision.datasets.utils import extract_archive
def patched_download(self):
"""wget patched download method.
"""
if self._check_exists():
return
os.makedirs(self.raw_folder, exist_ok=True)
os.makedirs(self.processed_folder, exist_ok=True)
# download files
for url, md5 in self.resources:
filename = url.rpartition('/')[2]
download_root = os.path.expanduser(self.raw_folder)
extract_root = None
remove_finished = False
if extract_root is None:
extract_root = download_root
if not filename:
filename = os.path.basename(url)
# Use wget to download archives
sp.run(["wget", url, "-P", download_root])
archive = os.path.join(download_root, filename)
print("Extracting {} to {}".format(archive, extract_root))
extract_archive(archive, extract_root, remove_finished)
# process and save as torch files
print('Processing...')
training_set = (
read_image_file(os.path.join(self.raw_folder, 'train-images-idx3-ubyte')),
read_label_file(os.path.join(self.raw_folder, 'train-labels-idx1-ubyte'))
)
test_set = (
read_image_file(os.path.join(self.raw_folder, 't10k-images-idx3-ubyte')),
read_label_file(os.path.join(self.raw_folder, 't10k-labels-idx1-ubyte'))
)
with open(os.path.join(self.processed_folder, self.training_file), 'wb') as f:
torch.save(training_set, f)
with open(os.path.join(self.processed_folder, self.test_file), 'wb') as f:
torch.save(test_set, f)
print('Done!')
MNIST.download = patched_download
mnist_train = MNIST("../data", train=True, download=True, transform=transforms.ToTensor())
mnist_test = MNIST("../data", train=False, download=True, transform=transforms.ToTensor())
train_loader = DataLoader(mnist_train, batch_size=1, shuffle=True)
test_loader = DataLoader(mnist_test, batch_size=1, shuffle=False)
I'm facing some issues with my databricks cluster configuration, and issue is that i'm not able to put a finger on where and why.
I was trying to save a keras model, and it seems to be not going well
dataset = pd.DataFrame([item.split(',') for item in '''6,148,72,35,0,33.6,0.627,50,1
1,85,66,29,0,26.6,0.351,31,0
8,183,64,0,0,23.3,0.672,32,1
1,89,66,23,94,28.1,0.167,21,0
0,137,40,35,168,43.1,2.288,33,1'''.split('\n')])
X = dataset.iloc[:,0:8]
y = dataset.iloc[:,8]
model = Sequential()
model.add(Dense(12, input_dim=8, activation='relu'))
model.add(Dense(8, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(X, y, epochs=3, batch_size=10)
accuracy = model.evaluate(X, y, verbose=0)
print(accuracy)
The issue is with saving the model, can anyone help me understand what the error is all about
I'm using Python 3.7.3, DBRuntime 6.2 (includes Apache Spark 2.4.4, Scala 2.11)
model.save('/dbfs/FileStore/tables/temp/new_model.h5')
KeyError Traceback (most recent call
last)
/databricks/python/lib/python3.7/site-packages/keras/engine/saving.py
in save_model(model, filepath, overwrite, include_optimizer)
540 with H5Dict(filepath, mode='w') as h5dict:
--> 541 _serialize_model(model, h5dict, include_optimizer)
542 elif hasattr(filepath, 'write') and callable(filepath.write):
/databricks/python/lib/python3.7/site-packages/keras/engine/saving.py
in _serialize_model(model, h5dict, include_optimizer)
160 for name, val in zip(weight_names, weight_values):
--> 161 layer_group[name] = val
162 if include_optimizer and model.optimizer:
/databricks/python/lib/python3.7/site-packages/keras/utils/io_utils.py
in setitem(self, attr, val)
230 raise KeyError('Cannot set attribute. '
--> 231 'Group with name "{}" exists.'.format(attr))
232 if is_np:
KeyError: 'Cannot set attribute. Group with name
"b\'dense_1/kernel:0\'" exists.'
During handling of the above exception, another exception occurred:
RuntimeError Traceback (most recent call
last) in
----> 1 model.save('/dbfs/FileStore/tables/temp/new_model.h5')
/databricks/python/lib/python3.7/site-packages/keras/engine/network.py
in save(self, filepath, overwrite, include_optimizer) 1150
raise NotImplementedError 1151 from ..models import
save_model
-> 1152 save_model(self, filepath, overwrite, include_optimizer) 1153 1154 #saving.allow_write_to_gcs
/databricks/python/lib/python3.7/site-packages/keras/engine/saving.py
in save_wrapper(obj, filepath, overwrite, *args, **kwargs)
447 os.remove(tmp_filepath)
448 else:
--> 449 save_function(obj, filepath, overwrite, *args, **kwargs)
450
451 return save_wrapper
/databricks/python/lib/python3.7/site-packages/keras/engine/saving.py
in save_model(model, filepath, overwrite, include_optimizer)
539 return
540 with H5Dict(filepath, mode='w') as h5dict:
--> 541 _serialize_model(model, h5dict, include_optimizer)
542 elif hasattr(filepath, 'write') and callable(filepath.write):
543 # write as binary stream
/databricks/python/lib/python3.7/site-packages/keras/utils/io_utils.py
in exit(self, exc_type, exc_val, exc_tb)
368
369 def exit(self, exc_type, exc_val, exc_tb):
--> 370 self.close()
371
372
/databricks/python/lib/python3.7/site-packages/keras/utils/io_utils.py
in close(self)
344 def close(self):
345 if isinstance(self.data, h5py.Group):
--> 346 self.data.file.flush()
347 if self._is_file:
348 self.data.close()
/databricks/python/lib/python3.7/site-packages/h5py/_hl/files.py in
flush(self)
450 """
451 with phil:
--> 452 h5f.flush(self.id)
453
454 #with_phil
h5py/_objects.pyx in h5py._objects.with_phil.wrapper()
h5py/_objects.pyx in h5py._objects.with_phil.wrapper()
h5py/h5f.pyx in h5py.h5f.flush()
RuntimeError: Unable to flush file's cached information (file write
failed: time = Fri Jan 31 08:19:53 2020 , filename =
'/dbfs/FileStore/tables/temp/new_model.h5', file descriptor = 9, errno
= 95, error message = 'Operation not supported', buf = 0x6993c98, total write size = 320, bytes this sub-write = 320, bytes actually
written = 18446744073709551615, offset = 800)
I was finally able to save the model, by saving it on driver only and copying it on s3...
import os
import shutil
classification_model.save('news_dedup_model.h5')
shutil.copyfile('/databricks/driver/news_dedup_model.h5', '/dbfs/FileStore/tables/temp/nemish/news_dedup_model.h5')
classification_model = load_model('/dbfs/FileStore/tables/temp/nemish/news_dedup_model.h5', custom_objects={'tf': tf})
Still unable to figure out, why wouldn't it save normally
Because keras model.save() doesn't support writing to a FUSE mount. Doing so you'll get 'Operation Not Supported' error.
You need to first write it to the driver node's local disk (where python's working directory is), then move it to DFBS FUSE mount using '/dbfs/your/path/on/DBFS'.
I am trying to download the zip file in memory, expand it and upload it to S3.
import boto3
import io
import zipfile
import mimetypes
s3 = boto3.resource('s3')
service_zip = io.BytesIO()
service_bucket = s3.Bucket('services.mydomain.com')
build_bucket = s3.Bucket('servicesbuild.mydomain.com')
build_bucket.download_fileobj('servicesbuild.zip', service_zip)
with zipfile.ZipFile(service_zip) as myzip:
for nm in myzip.namelist():
obj = myzip.open(nm)
print(obj)
service_bucket.upload_fileobj(obj,nm,
ExtraArgs={'ContentType': mimetypes.guess_type(nm)[0]})
service_bucket.Object(nm).Acl().put(ACL='public-read')
Here is the error I get
<zipfile.ZipExtFile name='favicon.ico' mode='r' compress_type=deflate>
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-7-5941e5e45adc> in <module>
18 print(obj)
19 service_bucket.upload_fileobj(obj,nm,
---> 20 ExtraArgs={'ContentType': mimetypes.guess_type(nm)[0]})
21 service_bucket.Object(nm).Acl().put(ACL='public-read')
~/bitbucket/clguru/env/lib/python3.7/site-packages/boto3/s3/inject.py in bucket_upload_fileobj(self, Fileobj, Key, ExtraArgs, Callback, Config)
579 return self.meta.client.upload_fileobj(
580 Fileobj=Fileobj, Bucket=self.name, Key=Key, ExtraArgs=ExtraArgs,
--> 581 Callback=Callback, Config=Config)
582
583
~/bitbucket/clguru/env/lib/python3.7/site-packages/boto3/s3/inject.py in upload_fileobj(self, Fileobj, Bucket, Key, ExtraArgs, Callback, Config)
537 fileobj=Fileobj, bucket=Bucket, key=Key,
538 extra_args=ExtraArgs, subscribers=subscribers)
--> 539 return future.result()
540
541
~/bitbucket/clguru/env/lib/python3.7/site-packages/s3transfer/futures.py in result(self)
71 # however if a KeyboardInterrupt is raised we want want to exit
72 # out of this and propogate the exception.
---> 73 return self._coordinator.result()
74 except KeyboardInterrupt as e:
75 self.cancel()
~/bitbucket/clguru/env/lib/python3.7/site-packages/s3transfer/futures.py in result(self)
231 # final result.
232 if self._exception:
--> 233 raise self._exception
234 return self._result
235
~/bitbucket/clguru/env/lib/python3.7/site-packages/s3transfer/tasks.py in _main(self, transfer_future, **kwargs)
253 # Call the submit method to start submitting tasks to execute the
254 # transfer.
--> 255 self._submit(transfer_future=transfer_future, **kwargs)
256 except BaseException as e:
257 # If there was an exception raised during the submission of task
~/bitbucket/clguru/env/lib/python3.7/site-packages/s3transfer/upload.py in _submit(self, client, config, osutil, request_executor, transfer_future, bandwidth_limiter)
547 # Determine the size if it was not provided
548 if transfer_future.meta.size is None:
--> 549 upload_input_manager.provide_transfer_size(transfer_future)
550
551 # Do a multipart upload if needed, otherwise do a regular put object.
~/bitbucket/clguru/env/lib/python3.7/site-packages/s3transfer/upload.py in provide_transfer_size(self, transfer_future)
324 fileobj.seek(0, 2)
325 end_position = fileobj.tell()
--> 326 fileobj.seek(start_position)
327 transfer_future.meta.provide_transfer_size(
328 end_position - start_position)
/usr/local/Cellar/python/3.7.0/Frameworks/Python.framework/Versions/3.7/lib/python3.7/zipfile.py in seek(self, offset, whence)
1023 # Position is before the current position. Reset the ZipExtFile
1024
-> 1025 self._fileobj.seek(self._orig_compress_start)
1026 self._running_crc = self._orig_start_crc
1027 self._compress_left = self._orig_compress_size
/usr/local/Cellar/python/3.7.0/Frameworks/Python.framework/Versions/3.7/lib/python3.7/zipfile.py in seek(self, offset, whence)
702 def seek(self, offset, whence=0):
703 with self._lock:
--> 704 if self.writing():
705 raise ValueError("Can't reposition in the ZIP file while "
706 "there is an open writing handle on it. "
AttributeError: '_SharedFile' object has no attribute 'writing'
If I comment out the lines after print(obj) to see the validate the zip file content,
import boto3
import io
import zipfile
import mimetypes
s3 = boto3.resource('s3')
service_zip = io.BytesIO()
service_bucket = s3.Bucket('services.readspeech.com')
build_bucket = s3.Bucket('servicesbuild.readspeech.com')
build_bucket.download_fileobj('servicesbuild.zip', service_zip)
with zipfile.ZipFile(service_zip) as myzip:
for nm in myzip.namelist():
obj = myzip.open(nm)
print(obj)
# service_bucket.upload_fileobj(obj,nm,
# ExtraArgs={'ContentType': mimetypes.guess_type(nm)[0]})
# service_bucket.Object(nm).Acl().put(ACL='public-read')
I see the following:
<zipfile.ZipExtFile name='favicon.ico' mode='r' compress_type=deflate>
<zipfile.ZipExtFile name='styles/main.css' mode='r' compress_type=deflate>
<zipfile.ZipExtFile name='images/example3.png' mode='r' compress_type=deflate>
<zipfile.ZipExtFile name='images/example1.png' mode='r' compress_type=deflate>
<zipfile.ZipExtFile name='images/example2.png' mode='r' compress_type=deflate>
<zipfile.ZipExtFile name='index.html' mode='r' compress_type=deflate>
Appears the issue is with python 3.7. I downgraded to python 3.6 and everything is fine. There is a bug reported on python 3.7
The misprint in the file lib/zipfile.py in line 704 leads to AttributeError: '_SharedFile' object has no attribute 'writing'
"self.writing()" should be replaced by "self._writing()". I also think this code should be covered by tests.
attribute 'writing
So to resolve the issue, use python 3.6.
On osx you can go back to Python 3.6 with the following command.
brew switch python 3.6.4_4
I want to download a file into a Python file object from an S3 bucket that has acceleration activated. I came across a few resources suggesting whether to overwrite the endpoint_url to "s3-accelerate.amazonaws.com" and/or to use the use_accelerate_endpoint attribute.
I have tried both, and several variations but the same error was returned everytime. One of the scripts I tried is:
from botocore.config import Config
import boto3
from io import BytesIO
session = boto3.session.Session()
s3 = session.client(
service_name='s3',
aws_access_key_id=<MY_KEY_ID>,
aws_secret_access_key=<MY_KEY>,
region_name="us-west-2",
config=Config(s3={"use_accelerate_endpoint": True,
"addressing_style": "path"}))
input = BytesIO()
s3.download_fileobj(<MY_BUCKET>,<MY_KEY>, input)
Returns the following error:
---------------------------------------------------------------------------
ClientError Traceback (most recent call last)
<ipython-input-61-92b89b45f215> in <module>()
11 "addressing_style": "path"}))
12 input = BytesIO()
---> 13 s3.download_fileobj(bucket, filename, input)
14
15
~/Project/venv/lib/python3.5/site-packages/boto3/s3/inject.py in download_fileobj(self, Bucket, Key, Fileobj, ExtraArgs, Callback, Config)
568 bucket=Bucket, key=Key, fileobj=Fileobj,
569 extra_args=ExtraArgs, subscribers=subscribers)
--> 570 return future.result()
571
572
~/Project//venv/lib/python3.5/site-packages/s3transfer/futures.py in result(self)
71 # however if a KeyboardInterrupt is raised we want want to exit
72 # out of this and propogate the exception.
---> 73 return self._coordinator.result()
74 except KeyboardInterrupt as e:
75 self.cancel()
~/Project/venv/lib/python3.5/site-packages/s3transfer/futures.py in result(self)
231 # final result.
232 if self._exception:
--> 233 raise self._exception
234 return self._result
235
~/Project/venv/lib/python3.5/site-packages/s3transfer/tasks.py in _main(self, transfer_future, **kwargs)
253 # Call the submit method to start submitting tasks to execute the
254 # transfer.
--> 255 self._submit(transfer_future=transfer_future, **kwargs)
256 except BaseException as e:
257 # If there was an exception raised during the submission of task
~/Project/venv/lib/python3.5/site-packages/s3transfer/download.py in _submit(self, client, config, osutil, request_executor, io_executor, transfer_future)
347 Bucket=transfer_future.meta.call_args.bucket,
348 Key=transfer_future.meta.call_args.key,
--> 349 **transfer_future.meta.call_args.extra_args
350 )
351 transfer_future.meta.provide_transfer_size(
~/Project/venv/lib/python3.5/site-packages/botocore/client.py in _api_call(self, *args, **kwargs)
310 "%s() only accepts keyword arguments." % py_operation_name)
311 # The "self" in this scope is referring to the BaseClient.
--> 312 return self._make_api_call(operation_name, kwargs)
313
314 _api_call.__name__ = str(py_operation_name)
~/Project/venv/lib/python3.5/site-packages/botocore/client.py in _make_api_call(self, operation_name, api_params)
603 error_code = parsed_response.get("Error", {}).get("Code")
604 error_class = self.exceptions.from_code(error_code)
--> 605 raise error_class(parsed_response, operation_name)
606 else:
607 return parsed_response
ClientError: An error occurred (403) when calling the HeadObject operation: Forbidden
When I run the same script with "use_accelerate_endpoint": False it works fine.
However, it returned the same error when:
I overwrite the endpoint_url with "s3-accelerate.amazonaws.com"
I define "addressing_style": "virtual"
When running
s3.get_bucket_accelerate_configuration(Bucket=<MY_BUCKET>)
I get {..., 'Status': 'Enabled'} as expected.
Any idea what is wrong with that code and what I should change to properly query the accelerate endpoint of that bucket?
Using python3.5 with boto3==1.4.7, botocore==1.7.43 on Ubuntu 17.04.
EDIT:
I have also tried a similar script for uploads:
from botocore.config import Config
import boto3
from io import BytesIO
session = boto3.session.Session()
s3 = session.client(
service_name='s3',
aws_access_key_id=<MY_KEY_ID>,
aws_secret_access_key=<MY_KEY>,
region_name="us-west-2",
config=Config(s3={"use_accelerate_endpoint": True,
"addressing_style": "virtual"}))
output = BytesIO()
output.seek(0)
s3.upload_fileobj(output, <MY_BUCKET>,<MY_KEY>)
Which works without the use_accelerate_endpoint option (so my keys are fine), but returns this error when True:
ClientError: An error occurred (SignatureDoesNotMatch) when calling the PutObject operation: The request signature we calculated does not match the signature you provided. Check your key and signing method.
I have tried both addressing_style options here as well (virtual and path)
Using boto3==1.4.7 and botocore==1.7.43.
Here is one way to retrieve an object from a bucket with transfer acceleration enabled.
import boto3
from botocore.config import Config
from io import BytesIO
config = Config(s3={"use_accelerate_endpoint": True})
s3_resource = boto3.resource("s3",
aws_access_key_id=<MY_KEY_ID>,
aws_secret_access_key=<MY_KEY>,
region_name="us-west-2",
config=config)
s3_client = s3_resource.meta.client
file_object = BytesIO()
s3_client.download_fileobj(<MY_BUCKET>, <MY_KEY>, file_object)
Note that the client sends a HEAD request to the accelerated endpoint before a GET.
The canonical request of which looks somewhat like the following:
CanonicalRequest:
HEAD
/<MY_KEY>
host:<MY_BUCKET>.s3-accelerate.amazonaws.com
x-amz-content-sha256:e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855
x-amz-date:20200520T204128Z
host;x-amz-content-sha256;x-amz-date
e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855
Some reasons why the HEAD request can fail include:
Object with given key doesn't exist or has strict access control enabled
Invalid credentials
Transfer acceleration isn't enabled