How to get sentiment score for a word in a given dataset - nlp

I have a sentiment analysis dataset that is labeled in three categories: positive, negative, and neutral. I also have a list of words (mostly nouns), for which I want to calculate the sentiment value, to understand "how" (positively or negatively) these entities were talked about in the dataset. I have read some online resources like blogs and thought about a couple of approaches for calculating the sentiment score for a particular word X.
Calculate how many data instances (sentences) which have the word X in those, have "positive" labels, have "negative" labels, and "neutral" labels. Then, calculate the weighted average sentiment for that word.
Take a generic untrained BERT architecture, and then train it using the dataset. Then, pass each word from the list to that trained model to get the sentiment scores for the word.
Does any of these approaches make sense? If so, can you suggest some related works that I can look at?
If these approaches don't make sense, could you please advise how I can calculate the sentiment score for a word, in a given dataset?

The first method will suffer from the same drawbacks as other bag-of-words models do. Consider that you have a dataset of movie reviews with their sentiment scores, and you want to find the sentiment for a particular actor called X. A label for a sample like "X's acting was the only good thing in an otherwise bad movie" will be negative, but the sentiment towards X is positive. A simple approach like the first one can't handle such cases.
The second approach also does not make much sense, as the BERT models may not perform well without context. You can try using weakly supervised learning which can help in creating token-level labels. Read section 3.3 for this paper to get an idea about this. Disclaimer: I'm one of the authors of this paper.

Related

Text representations : How to differentiate between strings of similar topic but opposite polarities?

I have been doing clustering of a certain corpus, and obtaining results that group sentences together by obtaining their tf-idf, checking similarity weights > a certain threshold value from the gensim model.
tfidf_dic = DocSim.get_tf_idf()
ds = DocSim(model,stopwords=stopwords, tfidf_dict=tfidf_dic)
sim_scores = ds.calculate_similarity(source_doc, target_docs)
The problem is that despite putting high threshold values, sentences of similar topics but opposite polarities get clustered together as such:
Here is an example of the similarity weights obtained between "don't like it" & "i like it"
Are there any other methods, libraries or alternative models that can differentiate the polarities effectively by assigning them very low similarities or opposite vectors?
This is so that the outputs "i like it" and "dont like it" are in separate clusters.
PS: Pardon me if there are any conceptual errors as I am rather new to NLP. Thank you in advance!
The problem is in how you represent your documents. Tf-idf is good for representing long documents where keywords play a more important role. Here, it is probably the idf part of tf-idf that disregards the polarity because negative particles like "no" or "not" will appear in most documents and they will always receive a low weight.
I would recommend trying some neural embeddings that might capture the polarity. If you want to keep using Gensim, you can try doc2vec but you would need quite a lot of training data for that. If you don't have much data to estimate the representation, I would use some pre-trained embeddings.
Even averaging word embeddings (you can load FastText embeddings in Gensim). Alternatively, if you want a stronger model, you can try BERT or another large pre-trained model from the Transformers package.
Unfortunately, simple text representations based merely on the sets-of-words don't distinguish such grammar-driven reversals-of-meaning very well.
The method needs to be sensitive to meaningful phrases, and the hierarchical, grammar-driven inter-word dependencies, to model that.
Deeper neural networks using convolutional/recurrent techniques do better, or methods which tree-model sentence-structure.
For ideas see for example...
"Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank"
...or a more recent summary presentation...
"Representations for Language: From Word Embeddings to Sentence Meanings"

Unsupervised sentiment Analysis using doc2vec

Folks,
I have searched Google for different type of papers/blogs/tutorials etc but haven't found anything helpful. I would appreciate if anyone can help me. Please note that I am not asking for code step-by-step but rather an idea/blog/paper or some tutorial.
Here's my problem statement:
Just like sentiment analysis is used for identifying positive and
negative tone of a sentence, I want to find whether a sentence is
forward-looking (future outlook) statement or not.
I do not want to use bag of words approach to sum up the number of forward-looking words/phrases such as "going forward", "in near future" or "In 5 years from now" etc. I am not sure if word2vec or doc2vec can be used. Please enlighten me.
Thanks.
It seems what you are interested in doing is finding temporal statements in texts.
Not sure of your final output, but let's assume you want to find temporal phrases or sentences which contain them.
One methodology could be the following:
Create list of temporal terms [days, years, months, now, later]
Pick only sentences with key terms
Use sentences in doc2vec model
Infer vector and use distance metric for new sentence
GMM Cluster + Limit
Distance from average
Another methodology could be:
Create list of temporal terms [days, years, months, now, later]
Do Bigram and Trigram collocation extraction
Keep relevant collocations with temporal terms
Use relevant collocations in a kind of bag-of-collocations approach
Matched binary feature vectors for relevant collocations
Train classifier to recognise higher level text
This sounds like a good case for a Bootstrapping approach if you have large amounts of texts.
Both are semi-supervised really, since there is some need for finding initial temporal terms, but even that could be automated using a word2vec scheme and bootstrapping

What's a good measure for classifying text documents?

I have written an application that measures text importance. It takes a text article, splits it into words, drops stopwords, performs stemming, and counts word-frequency and document-frequency. Word-frequency is a measure that counts how many times the given word appeared in all documents, and document-frequency is a measure that counts how many documents the given word appeared.
Here's an example with two text articles:
Article I) "A fox jumps over another fox."
Article II) "A hunter saw a fox."
Article I gets split into words (afters stemming and dropping stopwords):
["fox", "jump", "another", "fox"].
Article II gets split into words:
["hunter", "see", "fox"].
These two articles produce the following word-frequency and document-frequency counters:
fox (word-frequency: 3, document-frequency: 2)
jump (word-frequency: 1, document-frequency: 1)
another (word-frequency: 1, document-frequency: 1)
hunter (word-frequency: 1, document-frequency: 1)
see (word-frequency: 1, document-frequency: 1)
Given a new text article, how do I measure how similar this article is to previous articles?
I've read about df-idf measure but it doesn't apply here as I'm dropping stopwords, so words like "a" and "the" don't appear in the counters.
For example, I have a new text article that says "hunters love foxes", how do I come up with a measure that says this article is pretty similar to ones previously seen?
Another example, I have a new text article that says "deer are funny", then this one is a totally new article and similarity should be 0.
I imagine I somehow need to sum word-frequency and document-frequency counter values but what's a good formula to use?
A standard solution is to apply the Naive Bayes classifier which estimates the posterior probability of a class C given a document D, denoted as P(C=k|D) (for a binary classification problem, k=0 and 1).
This is estimated by computing the priors from a training set of class labeled documents, where given a document D we know its class C.
P(C|D) = P(D|C) * P(D) (1)
Naive Bayes assumes that terms are independent, in which case you can write P(D|C) as
P(D|C) = \prod_{t \in D} P(t|C) (2)
P(t|C) can simply be computed by counting how many times does a term occur in a given class, e.g. you expect that the word football will occur a large number of times in documents belonging to the class (category) sports.
When it comes to the other factor P(D), you can estimate it by counting how many labeled documents are given from each class, may be you have more sports articles than finance ones, which makes you believe that there is a higher likelihood of an unseen document to be classified into the sports category.
It is very easy to incorporate factors, such as term importance (idf), or term dependence into Equation (1). For idf, you add it as a term sampling event from the collection (irrespective of the class).
For term dependence, you have to plugin probabilities of the form P(u|C)*P(u|t), which means that you sample a different term u and change (transform) it to t.
Standard implementations of Naive Bayes classifier can be found in the Stanford NLP package, Weka and Scipy among many others.
It seems that you are trying to answer several related questions:
How to measure similarity between documents A and B? (Metric learning)
How to measure how unusual document C is, compared to some collection of documents? (Anomaly detection)
How to split a collection of documents into groups of similar ones? (Clustering)
How to predict to which class a document belongs? (Classification)
All of these problems are normally solved in 2 steps:
Extract the features: Document --> Representation (usually a numeric vector)
Apply the model: Representation --> Result (usually a single number)
There are lots of options for both feature engineering and modeling. Here are just a few.
Feature extraction
Bag of words: Document --> number of occurences of each individual word (that is, term frequencies). This is the basic option, but not the only one.
Bag of n-grams (on word-level or character-level): co-occurence of several tokens is taken into account.
Bag of words + grammatic features (e.g. POS tags)
Bag of word embeddings (learned by an external model, e.g. word2vec). You can use embedding as a sequence or take their weighted average.
Whatever you can invent (e.g. rules based on dictionary lookup)...
Features may be preprocessed in order to decrease relative amount of noise in them. Some options for preprocessing are:
dividing by IDF, if you don't have a hard list of stop words or believe that words might be more or less "stoppy"
normalizing each column (e.g. word count) to have zero mean and unit variance
taking logs of word counts to reduce noise
normalizing each row to have L2 norm equal to 1
You cannot know in advance which option(s) is(are) best for your specific application - you have to do experiments.
Now you can build the ML model. Each of 4 problems has its own good solutions.
For classification, the best studied problem, you can use multiple kinds of models, including Naive Bayes, k-nearest-neighbors, logistic regression, SVM, decision trees and neural networks. Again, you cannot know in advance which would perform best.
Most of these models can use almost any kind of features. However, KNN and kernel-based SVM require your features to have special structure: representations of documents of one class should be close to each other in sense of Euclidean distance metric. This sometimes can be achieved by simple linear and/or logarithmic normalization (see above). More difficult cases require non-linear transformations, which in principle may be learned by neural networks. Learning of these transformations is something people call metric learning, and in general it is an problem which is not yet solved.
The most conventional distance metric is indeed Euclidean. However, other distance metrics are possible (e.g. manhattan distance), or different approaches, not based on vector representations of texts. For example, you can try to calculate Levenstein distance between texts, based on count of number of operations needed to transform one text to another. Or you can calculate "word mover distance" - the sum of distances of word pairs with closest embeddings.
For clustering, basic options are K-means and DBScan. Both these models require your feature space have this Euclidean property.
For anomaly detection you can use density estimations, which are produced by various probabilistic algorithms: classification (e.g. naive Bayes or neural networks), clustering (e.g. mixture of gaussian models), or other unsupervised methods (e.g. probabilistic PCA). For texts, you can exploit the sequential language structure, estimating probabilitiy of each word conditional on the previous words (using n-grams or convolutional/recurrent neural nets) - this is called language models, and it is usually more efficient than bag-of-word assumption of Naive Bayes, which ignores word order. Several language models (one for each class) may be combined into one classifier.
Whatever problem you solve, it is strongly recommended to have a good test set with the known "ground truth": which documents are close to each other, or belong to the same class, or are (un)usual. With this set, you can evaluate different approaches to feature engineering and modelling, and choose the best one.
If you don't have resourses or willingness to do multiple experiments, I would recommend to choose one of the following approaches to evaluate similarity between texts:
word counts + idf normalization + L2 normalization (equivalent to the solution of #mcoav) + Euclidean distance
mean word2vec embedding over all words in text (the embedding dictionary may be googled up and downloaded) + Euclidean distance
Based on one of these representations, you can build models for the other problems - e.g. KNN for classifications or k-means for clustering.
I would suggest tf-idf and cosine similarity.
You can still use tf-idf if you drop out stop-words. It is even probable that whether you include stop-words or not would not make such a difference: the Inverse Document Frequency measure automatically downweighs stop-words since they are very frequent and appear in most documents.
If your new document is entirely made of unknown terms, the cosine similarity will be 0 with every known document.
When I search on df-idf I find nothing.
tf-idf with cosine similarity is very accepted and common practice
Filtering out stop words does not break it. For common words idf gives them low weight anyway.
tf-idf is used by Lucene.
Don't get why you want to reinvent the wheel here.
Don't get why you think the sum of df idf is a similarity measure.
For classification do you have some predefined classes and sample documents to learn from? If so can use Naive Bayes. With tf-idf.
If you don't have predefined classes you can use k means clustering. With tf-idf.
It depend a lot on your knowledge of the corpus and classification objective. In like litigation support documents produced to you, you have and no knowledge of. In Enron they used names of raptors for a lot of the bad stuff and no way you would know that up front. k means lets the documents find their own clusters.
Stemming does not always yield better classification. If you later want to highlight the hits it makes that very complex and the stem will not be the length of the word.
Have you evaluated sent2vec or doc2vec approaches? You can play around with the vectors to see how close the sentences are. Just an idea. Not a verified solution to your question.
While in English a word alone may be enough, it isn't the case in some other more complex languages.
A word has many meanings, and many different uses cases. One text can talk about the same things while using fews to none matching words.
You need to find the most important words in a text. Then you need to catch their possible synonyms.
For that, the following api can help. It is doable to create something similar with some dictionaries.
synonyms("complex")
function synonyms(me){
var url = 'https://api.datamuse.com/words?ml=' + me;
fetch(url).then(v => v.json()).then((function(v){
syn = JSON.stringify(v)
syn = JSON.parse(syn)
for(var k in syn){
document.body.innerHTML += "<span>"+syn[k].word+"</span> "
}
})
)
}
From there comparing arrays will give much more accuracy, much less false positive.
A sufficient solution, in a possibly similar task:
Use of a binary bag-of-word (BOW) approach for the vector representation (frequent words aren't higher weighted than seldom words), rather than a real TF approach
The embedding "word2vec" approach, is sensitive to sequence and distances effects. It might make - depending on your hyper-parameters - a difference between 'a hunter saw a fox' and 'a fox saw a jumping hunter' ... so you have to decide, if this means adding noise to your task - or, alternatively, to use it as an averaged vector only, over all of your text
Extract high within-sentence-correlation words ( e.g., by using variables- mean-normalized- cosine-similaritities )
Second Step: Use this list of high-correlated words, as a positive list, i.e. as new vocab for an new binary vectorizer
This isolated meaningful words for the 2nd step cosine comparisons - in my case, even for rather small amounts of training texts

Multiclass text classification with python and nltk

I am given a task of classifying a given news text data into one of the following 5 categories - Business, Sports, Entertainment, Tech and Politics
About the data I am using:
Consists of text data labeled as one of the 5 types of news statement (Bcc news data)
I am currently using NLP with nltk module to calculate the frequency distribution of every word in the training data with respect to each category(except the stopwords).
Then I classify the new data by calculating the sum of weights of all the words with respect to each of those 5 categories. The class with the most weight is returned as the output.
Heres the actual code.
This algorithm does predict new data accurately but I am interested to know about some other simple algorithms that I can implement to achieve better results. I have used Naive Bayes algorithm to classify data into two classes (spam or not spam etc) and would like to know how to implement it for multiclass classification if it is a feasible solution.
Thank you.
In classification, and especially in text classification, choosing the right machine learning algorithm often comes after selecting the right features. Features are domain dependent, require knowledge about the data, but good quality leads to better systems quicker than tuning or selecting algorithms and parameters.
In your case you can either go to word embeddings as already said, but you can also design your own custom features that you think will help in discriminating classes (whatever the number of classes is). For instance, how do you think a spam e-mail is often presented ? A lot of mistakes, syntaxic inversion, bad traduction, punctuation, slang words... A lot of possibilities ! Try to think about your case with sport, business, news etc.
You should try some new ways of creating/combining features and then choose the best algorithm. Also, have a look at other weighting methods than term frequencies, like tf-idf.
Since your dealing with words I would propose word embedding, that gives more insights into relationship/meaning of words W.R.T your dataset, thus much better classifications.
If you are looking for other implementations of classification you check my sample codes here , these models from scikit-learn can easily handle multiclasses, take a look here at documentation of scikit-learn.
If you want a framework around these classification that is easy to use you can check out my rasa-nlu, it uses spacy_sklearn model, sample implementation code is here. All you have to do is to prepare the dataset in a given format and just train the model.
if you want more intelligence then you can check out my keras implementation here, it uses CNN for text classification.
Hope this helps.

Multiclass text classification: new class if input does not match to a class

I am trying to classify pieces of text to categories. I have 9 categories but the given sentences i have can be classify to more categories. My objective is to take a piece of text and find the industry of each sentence, one common problem i have is that my training set does not have a "Porn" category and sentences with porn material classified to "Financial".
I want my classifier to check if the sentence can be categorized to a class and if not just print that cant classify that text.
I am using Tf-idf vectorizer to transform the sentences and then i feed the data to a LinearSVC.
Can anyone help me with this issue?
Or can anyone provde me any usefull material?
Firstly, the problem you have with the “Porn” documents being classified as “Financial” doesn’t seem to be entirely related to the other question here. I’ll address the main question for now.
The setting is that you have data for 9 categories, but the actual document universe is bigger. The problem is to determine that you haven’t seen the likes of a particular data point before. This seems to be more like outlier or anomaly detection, than classification.
You'll have to do some background reading to proceed further, but here are some points to get you started. One strategy to use is to determine if the new document is “similar” to other documents that you have in your collection. The idea being that an outlier is not likely to be similar to “normal” documents. To do this, you would need a robust measure of document similarity.
Outline of a potential method you can use:
Find a good representation of the documents, say tf-idf vectors, or better.
Benchmark the documents within your collection. For each document, the “goodness” score is the highest similarity score with all other documents in the collection. (Alternately, you can use k’th highest similarity, for some fault tolerance.)
Given the new document, measure its goodness score in a similar way.
How does the new document compare to other documents in terms of the goodness score? A very low goodness score is a sign of an outlier.
Further reading:
Survey of Anomaly Detection
LSA, which is a technique for text representation and similarity computation.

Resources