I have a dataframe:
df = pd.DataFrame(np.random.randint(0,100,size=(15, 4)), columns=list('ABCD'))
I would like to create another BOOL column or YES/NO column based on the sum of column A and B > 150
I am trying a generator kind of solution:
df['Truth'] = ['Yes' for i in df.columns.values if (df.A+df.B > 150)]
I know this does not work but I keep getting another error
ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().
How do I code this and what does this error mean?
How to get a column of Boolean values:
(df.A + df.B) > 150 generates a pandas.Series of Boolean values. Assign it to a column name.
import pandas as pd
import numpy as np
# sample data
np.random.seed(2)
df = pd.DataFrame(np.random.randint(0, 100, size=(15, 4)), columns=list('ABCD'))
# create the Boolean column
df['Truth'] = (df.A + df.B) > 150
# display(df)
A B C D Truth
0 40 15 72 22 False
1 43 82 75 7 False
2 34 49 95 75 False
3 85 47 63 31 False
4 90 20 37 39 False
5 67 4 42 51 False
6 38 33 58 67 False
7 69 88 68 46 True
8 70 95 83 31 True
9 66 80 52 76 False
10 50 4 90 63 False
11 79 49 39 46 False
12 8 50 15 8 False
13 17 22 73 57 False
14 90 62 83 96 True
What does this error mean:
What is shown in the question is a list-comprehension, not a generator.
(df.A + df.B) returns a pandas.Series, which can be compared to a value like 150
The issue with the list comprehension is if (df.A+df.B > 150), which causes the ValueError because there is a series, not just a single Boolean.
Another issue is df.columns.values is just a list of the column names.
See Truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all() for further details on the error.
How can I reference the minimum value of two dataframes as part of a pandas dataframe equation? I tried using the python min() function which did not work. I'm sorry if this is well-documented somewhere but I have not been able to find a working solution for this problem. I am looking for something along the lines of this:
data['eff'] = pd.DataFrame([data['flow_h'], data['flow_c']]).min() *Cp* (data[' Thi'] - data[' Tci'])
I also tried to use pandas min() function, which is also not working.
min_flow = pd.DataFrame([data['flow_h'], data['flow_c']]).min()
InvalidIndexError: Reindexing only valid with uniquely valued Index objects
I was confused by this error. The data columns are just numbers and a name, I wasn't sure where the index comes into play.
import pandas as pd
import numpy as np
np.random.seed(365)
rows = 10
flow = {'flow_c': [np.random.randint(100) for _ in range(rows)],
'flow_d': [np.random.randint(100) for _ in range(rows)],
'flow_h': [np.random.randint(100) for _ in range(rows)]}
data = pd.DataFrame(flow)
# display(data)
flow_c flow_d flow_h
0 82 36 43
1 52 48 12
2 33 28 77
3 91 99 11
4 44 95 27
5 5 94 64
6 98 3 88
7 73 39 92
8 26 39 62
9 56 74 50
If you are trying to get the row-wise mininum of two or more columns, use pandas.DataFrame.min. Note that by default axis=0; specifying axis=1 is necessary.
data['min_c_h'] = data[['flow_h','flow_c']].min(axis=1)
# display(data)
flow_c flow_d flow_h min_c_h
0 82 36 43 43
1 52 48 12 12
2 33 28 77 33
3 91 99 11 11
4 44 95 27 27
5 5 94 64 5
6 98 3 88 88
7 73 39 92 73
8 26 39 62 26
9 56 74 50 50
If you like to get a single minimum value of multiple columns:
data[['flow_h','flow_c']].min().min()
the first "min()" calculates the minimum per column and returns a pandas series. The second "min" returns the minimum of the minimums per column.
Data:
Date Stock Peak Trough Price
2002-01-01 33.78 False False 25
2002-01-02 34.19 False False 35
2002-01-03 35.44 False False 33
2002-01-04 36.75 False False 38
I use this line of code to set 'Peak' to true in each row whenever the price of a stock is higher or equal to the max value in the row starting from column 4:
df['Peak'] = np.where(df.iloc[:,4:].max(axis=1) >= df[stock], 'False', 'True')
However, I'm trying to make it so that the first X and last Y rows are not affected. Let's say X and Y are both 10 in this example. I modified it like this:
df.iloc[10:-10]['Peak'] = np.where(df.iloc[10:-10,4:].max(axis=1) >= df.iloc[10:-10][stock], 'False', 'True')
This gives me an error SettingWithCopyWarning and also doesn't work anymore. Does anyone have an idea how to get the desired result so that the first X and last Y rows are always False?
I believe you need a get_loc to specify column index when assigning using df.iloc[] :
df.iloc[10:,df.columns.get_loc('year')] = (np.where(df.iloc[10:,4:].max(axis=1)
>= df.iloc[10:,df.columns.get_loc('stock')],'False', 'True'))
To try here is a test case:
np.random.seed(123)
df = pd.DataFrame(np.random.randint(0,100,(5,4)),columns=list('ABCD'))
print(df)
A B C D
0 66 92 98 17
1 83 57 86 97
2 96 47 73 32
3 46 96 25 83
4 78 36 96 80
Trying to set column D as np.nan from index 2 we get the same error:
df.iloc[2:]['D']=np.nan
A value is trying to be set on a copy of a slice from a DataFrame. Try
using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation:
http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
"""Entry point for launching an IPython kernel.
Trying the same avoiding a chained assignment using get_loc (successful)
df.iloc[2:,df.columns.get_loc('D')] = np.nan
print(df)
A B C D
0 66 92 98 17.0
1 83 57 86 97.0
2 96 47 73 NaN
3 46 96 25 NaN
4 78 36 96 NaN
For a given pandas dataframe df, I would like to compare every sample (row) with each other.
For bigger datasets this would lead to too many comparisons (n**2). Therefore, it is necessary to perform these comparisons only for smaller groups (i.e. for all of those which share the same id) and as efficiently as possible.
I would like to construct a dataframe (df_pairs), which contains in every row one pair. Additionally, I would like to get all pair indices (ideally as a Python set).
First, I construct an example dataframe:
import numpy as np
import pandas as pd
from functools import reduce
from itertools import product, combinations
n_samples = 10_000
suffixes = ["_1", "_2"] # for df_pairs
id_str = "id"
df = pd.DataFrame({id_str: np.random.randint(0, 10, n_samples),
"A": np.random.randint(0, 100, n_samples),
"B": np.random.randint(0, 100, n_samples),
"C": np.random.randint(0, 100, n_samples)}, index=range(0, n_samples))
columns_df_pairs = ([elem + suffixes[0] for elem in df.columns] +
[elem + suffixes[1] for elem in df.columns])
In the following, I am comparing 4 different options with the corresponding performance measures:
Option 1
groups = df.groupby(id_str).groups # get the groups
pairs_per_group = [set(product(elem.tolist(), repeat=2)) for _, elem in groups.items()] # determine pairs per group
set_of_pairs = reduce(set.union, pairs_per_group) # convert all groups into one set
idcs1, idcs2 = zip(*[(e1, e2) for e1, e2 in set_of_pairs])
df_pairs = pd.DataFrame(np.hstack([df.values[idcs1, :], df.values[idcs2, :]]), # construct the dataframe of pairs
columns=columns_df_pairs,
index=pd.MultiIndex.from_tuples(set_of_pairs, names=('index 1', 'index 2')))
df_pairs.drop([id_str + suffixes[0], id_str + suffixes[1]], inplace=True, axis=1)
Option 1 takes 34.2 s ± 1.28 s.
Option 2
groups = df.groupby(id_str).groups # get the groups
pairs_per_group = [np.array(np.meshgrid(elem.values, elem.values)).T.reshape(-1, 2) for _, elem in groups.items()]
idcs = np.unique(np.vstack(pairs_per_group), axis=0)
df_pairs2 = pd.DataFrame(np.hstack([df.values[idcs[:, 0], :], df.values[idcs[:, 1], :]]), # construct the dataframe of pairs
columns=columns_df_pairs,
index=pd.MultiIndex.from_arrays([idcs[:, 0], idcs[:, 1]], names=('index 1', 'index 2')))
df_pairs2.drop([id_str + suffixes[0], id_str + suffixes[1]], inplace=True, axis=1)
Option 2 takes 13 s ± 1.34 s.
Option 3
groups = df.groupby(id_str).groups # get the groups
pairs_per_group = [np.array([np.tile(elem.values, len(elem.values)), np.repeat(elem.values, len(elem.values))]).T.reshape(-1, 2) for _, elem in groups.items()]
idcs = np.unique(np.vstack(pairs_per_group), axis=0)
df_pairs3 = pd.DataFrame(np.hstack([df.values[idcs[:, 0], :], df.values[idcs[:, 1], :]]), # construct the dataframe of pairs
columns=columns_df_pairs,
index=pd.MultiIndex.from_arrays([idcs[:, 0], idcs[:, 1]], names=('index 1', 'index 2')))
df_pairs3.drop([id_str + suffixes[0], id_str + suffixes[1]], inplace=True, axis=1)
Option 3 takes 12.1 s ± 347 ms.
Option 4
df_pairs4 = pd.merge(left=df, right=df, how="inner", on=id_str, suffixes=suffixes)
# here, I do not know how to get the MultiIndex in
df_pairs4.drop([id_str], inplace=True, axis=1)
Option 4 is computed the quickest with 1.41 s ± 239 ms. However, I do not have the paired indices in this case.
I could improve the performance a little bit by using comparisons instead of product of itertools. I could also build the comparison matrix and use only the upper triangular one and construct my dataframe from there. This however does not seem to be more efficient than performing the cartesian product and removing the self-references as well as inverse comparisons (a, b) = (b, a).
Could you tell me a more efficient way to get pairs for comparison (ideally as a set to be able to use set operations)?
Could I use merge or another pandas function to construct my desired dataframe with the multi-indices?
An inner merge will destroy the index in favor of a new Int64Index. If the index is important bring it along as a column by reset_index, then set those columns back to the Index.
df_pairs4 = (pd.merge(left=df.reset_index(), right=df.reset_index(),
how="inner", on=id_str, suffixes=suffixes)
.set_index(['index_1', 'index_2']))
id A_1 B_1 C_1 A_2 B_2 C_2
index_1 index_2
0 0 4 92 79 10 92 79 10
13 4 92 79 10 83 68 69
24 4 92 79 10 67 73 90
25 4 92 79 10 22 31 35
36 4 92 79 10 64 44 20
... .. ... ... ... ... ... ...
9993 9971 7 20 65 92 47 65 21
9977 7 20 65 92 50 35 27
9980 7 20 65 92 43 36 62
9992 7 20 65 92 99 2 17
9993 7 20 65 92 20 65 92
I am trying to create a Pandas Dataframe from a string using the following code -
import pandas as pd
input_string="""A;B;C
0;34;88
2;45;200
3;47;65
4;32;140
"""
data = input_string
df = pd.DataFrame([x.split(';') for x in data.split('\n')])
print(df)
I am getting the following result -
0 1 2
0 A B C
1 0 34 88
2 2 45 200
3 3 47 65
4 4 32 140
5 None None
But I need something like the following -
A B C
0 34 88
2 45 200
3 47 65
4 32 140
I added "index = False" while creating the dataframe like -
df = pd.DataFrame([x.split(';') for x in data.split('\n')],index = False)
But, it gives me an error -
TypeError: Index(...) must be called with a collection of some kind, False
was passed
How is this achievable?
Use read_csv with StringIO and index_col parameetr for set first column to index:
input_string="""A;B;C
0;34;88
2;45;200
3;47;65
4;32;140
"""
df = pd.read_csv(pd.compat.StringIO(input_string),sep=';', index_col=0)
print (df)
B C
A
0 34 88
2 45 200
3 47 65
4 32 140
Your solution should be changed with split by default parameter (arbitrary whitespace), pass to DataFrame all values of lists without first with columns parameter and if need first column to index add DataFrame.set_axis:
L = [x.split(';') for x in input_string.split()]
df = pd.DataFrame(L[1:], columns=L[0]).set_index('A')
print (df)
B C
A
0 34 88
2 45 200
3 47 65
4 32 140
For general solution use first value of first list in set_index:
L = [x.split(';') for x in input_string.split()]
df = pd.DataFrame(L[1:], columns=L[0]).set_index(L[0][0])
EDIT:
You can set column name instead index name to A value:
df = df.rename_axis(df.index.name, axis=1).rename_axis(None)
print (df)
A B C
0 34 88
2 45 200
3 47 65
4 32 140
import pandas as pd
input_string="""A;B;C
0;34;88
2;45;200
3;47;65
4;32;140
"""
data = input_string
df = pd.DataFrame([x.split(';') for x in data.split()])
df.columns = df.iloc[0]
df = df.iloc[1:].rename_axis(None, axis=1)
df.set_index('A',inplace = True)
df
output
B C
A
0 34 88
2 45 200
3 47 65
4 32 140