Pattern matching and arity in Haskell [duplicate] - haskell

This question already has answers here:
Defining a function by equations with different number of arguments
(3 answers)
Closed 1 year ago.
While trying to define a Haskell function which corresponds to repeated evaluation, I ran into an "Equations give different arities" error. This is my code:
nEvals :: Int -> (a -> a) -> a -> a
nEvals 1 = ($) --equivalent to nEvals 1 f x = f x
nEvals k f = (nEvals (k - 1) f) . f --equivalent to nEvals k f x = nEvals (k - 1) f (f x)
I don't quite understand why Haskell is giving this error, since I'm using pattern matching, not explicitly assigning a value for a given set of inputs. Perhaps Haskell only allows pattern matching on a fixed number of parameters? If so, could someone explain why that decision was made?

You should specify the same number of parameters in all the clauses of the definition of your function. This thus means that you implement this as:
nEvals :: Int -> (a -> a) -> a -> a
nEvals 1 f = f -- added f as parameter
nEvals k f = (nEvals (k - 1) f) . f
we can also reduce the number of parameters with:
nEvals :: Int -> (a -> a) -> a -> a
nEvals 1 = id
nEvals k = (.) =<< nEvals (k - 1)

The Haskell Report section 4.4.3.1 requires it:
A function binding binds a variable to a function value. The general form of a function binding for variable x is:
x p11 … p1k match1
…
x pn1 … pnk matchn
where each pij is a pattern, [...]
Note that all clauses defining a function must be contiguous, and the number of patterns in each clause must be the same.
It doesn't explicitly say why, but it does state that:
Translation: The general binding form for functions is semantically equivalent to the equation (i.e. simple pattern binding):
x = \ x1 … xk -> case (x1, …, xk) of
(p11, …, p1k) match1
…
(pn1, …, pnk) matchn
This translation would not be possible with different numbers of patterns.
It might have been possible to instead define the behavior in terms of e.g.
case (x11, …, x1k) of
(p11, …, p1k) match1
_ -> case (x21, …, x2k) of
(p21, …, p2k) match2
_ -> ...
but it seems like a mess that it's harder for the compiler to work efficiently with, for very little benefit.

Related

Is a section the result of currying?

In Programming in Haskell by Hutton
In general, if # is an operator, then expressions of the form (#), (x #), and (# y) for arguments x and
y are called sections, whose meaning as functions can be
formalised using lambda expressions as follows:
(#) = \x -> (\y -> x # y)
(x #) = \y -> x # y
(# y) = \x -> x # y
What are the difference and relation between "section" and "currying"?
Is a section the result of applying the currying operation to a multi-argument function?
Thanks.
A section is just special syntax for applying an infix operator to a single argument. (# y) is the more useful of the two, as (x #) is equivalent to (#) x (which is just applying the infix operator as a function to a single argument in the usual fashion).
curry f x y = f (x,y). uncurry g (x,y) = g x y.
(+ 3) 4 = (+) 4 3 = 4 + 3. (4 +) 3 = (+) 4 3 = 4 + 3.
A section is a result of partial application of a curried function: (+ 3) = flip (+) 3, (4 +) = (+) 4.
A curried function (like g or (+)) expects its arguments one at a time. An uncurried function (like f) expects its arguments in a tuple.
To partially apply an uncurried function we have first to turn it into a curried function, with curry. To partially apply a curried function we don't need to do anything, just apply it to an argument.
curry :: ((a, b) -> c ) -> ( a -> (b -> c))
uncurry :: (a -> (b -> c)) -> ((a, b) -> c )
x :: a
g :: a -> (b -> c)
--------------------
g x :: b -> c
x :: a
f :: (a, b) -> c
---------------------------
curry f :: a -> (b -> c)
curry f x :: b -> c
Left sections and right sections are syntactical devices for partially applying an infix operator to a single argument (see also chepner's answer). For the sake of accuracy, we should note that currying is not the same thing as partial application:
Currying is converting a function that takes N arguments into a function that takes a single argument and returns a function that takes N-1 arguments.
Partial application is making a function that takes N-1 arguments out of a function that takes N arguments by supplying one of the arguments.
In Haskell, it happens that everything is curried; all functions take just one argument (even uncurried functions in Haskell take a tuple, which is, strictly speaking, a single argument -- you might want to play with the curry and uncurry functions to see how that works). Still, we very often think informally of functions that return functions as functions of multiple arguments. From that vantage point, a nice consequence of currying by default is that partial application of a function to its first argument becomes trivial: while, for instance, elem takes a value and a container and tests if the value is an element of the contaier, elem "apple" takes a container (of strings) and tests if "apple" is an element of it.
As for operators, when we write, for instance...
5 / 2
... we are applying the operator / to the arguments 5 and 2. The operator can also be used in prefix form, rather than infix:
(/) 5 2
In prefix form, the operator can be partially applied in the usual way:
(/) 5
That, however, arguably looks a little awkward -- after all, 5 here is the numerator, and not the denominator. I'd say left section syntax is easier on the eye in this case:
(5 /)
Furthermore, partial application to the second argument is not quite as straightforward to write, requiring a lambda, or flip. In the case of operators, a right section can help with that:
(/ 2)
Note that sections also work with functions made into operators through backtick syntax, so this...
(`elem` ["apple", "grape", "orange"])
... takes a string and tests whether it can be found in ["apple", "grape", "orange"].

Inverting a fold

Suppose for a minute that we think the following is a good idea:
data Fold x y = Fold {start :: y, step :: x -> y -> y}
fold :: Fold x y -> [x] -> y
Under this scheme, functions such as length or sum can be implemented by calling fold with the appropriate Fold object as argument.
Now, suppose you want to do clever optimisation tricks. In particular, suppose you want to write
unFold :: ([x] -> y) -> Fold x y
It should be relatively easy to rule a RULES pragma such that fold . unFold = id. But the interesting question is... can we actually implement unFold?
Obviously you can use RULES to apply arbitrary code transformations, whether or not they preserve the original meaning of the code. But can you really write an unFold implementation which actually does what its type signature suggests?
No, it's not possible. Proof: let
f :: [()] -> Bool
f[] = False
f[()] = False
f _ = True
First we must, for f' = unFold f, have start f' = False, because when folding over the empty list we directly get the start value. Then we must require step f' () False = False to achieve fold f' [()] = False. But when now evaluating fold f' [(),()], we would again only get a call step f' () False, which we had to define as False, leading to fold f' [(),()] ≡ False, whereas f[(),()] ≡ True. So there exists no unFold f that fulfills fold $ unFold f ≡ f.                                                                                                                                              □
You can, but you need to make a slight modification to Fold in order to pull it off.
All functions on lists can be expressed as a fold, but sometimes to accomplish this, extra bookkeeping is needed. Suppose we add an additional type parameter to your Fold type, which passes along this additional contextual information.
data Fold a c r = Fold { _start :: (c, r), _step :: a -> (c,r) -> (c,r) }
Now we can implement fold like so
fold :: Fold a c r -> [a] -> r
fold (Fold step start) = snd . foldr step start
Now what happens when we try to go the other way?
unFold :: ([a] -> r) -> Fold a c r
Where does the c come from? Functions are opaque values, so it's hard to know how to inspect a function and know which contextual information it relies on. So, let's cheat a little. We're going to have the "contextual information" be the entire list, so then when we get to the leftmost element, we can just apply the function to the original list, ignoring the prior cumulative results.
unFold :: ([a] -> r) -> Fold a [a] r
unFold f = Fold { _start = ([], f [])
, _step = \a (c, _r) -> let c' = a:c in (c', f c') }
Now, sadly, this does not necessarily compose with fold, because it requires that c must be [a]. Let's fix that by hiding c with existential quantification.
{-# LANGUAGE ExistentialQuantification #-}
data Fold a r = forall c. Fold
{ _start :: (c,r)
, _step :: a -> (c,r) -> (c,r) }
fold :: Fold a r -> [a] -> r
fold (Fold start step) = snd . foldr step start
unFold :: ([a] -> r) -> Fold a r
unFold f = Fold start step where
start = ([], f [])
step a (c, _r) = let c' = a:c in (c', f c')
Now, it should always be true that fold . unFold = id. And, given a relaxed notion of equality for the Fold data type, you could also say that unFold . fold = id. You can even provide a smart constructor that acts like the old Fold constructor:
makeFold :: r -> (a -> r -> r) -> Fold a r
makeFold start step = Fold start' step' where
start' = ((), start)
step' a ((), r) = ((), step a r)
tl;dr:
Conclusion 1: you can't
What you asked for originally isn't possible, at least not by any version of what you wanted I can come up with. (See below.)
If change your data type to allow me to store intermediate calculations, I think I'll be fine, but even then,
the function unFold would be rather inefficient, which seems to run counter to your clever optimisation tricks agenda!
Conclusion 2: I don't think it achieves what you want, even if you work around it by changing the types
Any optimisation of the list algorithm would be subject to the problem that you've calculated the step function using the original unoptimised function, and quite probably in a complicated way.
Since there's no equality on functions, optimising step to something efficient isn't possible. I think you need a human to do unFold, not a compiler.
Anyway, back to the original question:
Could fold . unFold = id ?
No. Suppose we have
isSingleton :: [a] -> Bool
isSingleton [x] = True
isSingleton _ = False
then if we had unFold :: ([x] -> y) -> Fold x y then if foldSingleton was the same as unFold isSingleton would need to have
foldSingleton = Fold {start = False , step = ???}
Where step takes an element of the list and updates the result.
Now isSingleton "a" == True, we need
step False = True
and because isSingleton "ab" == False, we need
step True = False
so step = not would do so far, but also isSingleton "abc" == False so we also need
step False = False
Since there are functions ([x] -> y) that cannot be represented by a value of type Fold x y, there cannot exist a function unFold :: ([x] -> y) -> Fold x y such that fold . unFold = id, because id is a total function.
Edit:
It turns out you're not convinced by this, because you only expected unFold to work on functions that had a representation as a fold, so maybe you meant unFold.fold = id.
Could unFold . fold = id ?
No.
Even if you just want unFold to work on functions ([x] -> y) that can be obtained using fold :: Fold x y -> ([x] -> y), I don't think it's possible. Let's address the question by assuming now we have defined
combine :: X -> Y -> Y
initial :: Y
folded :: [X] -> Y
folded = fold $ Fold initial combine
Recovering the value initial is trivial: initial = folded [].
Recovery of the original combine is not, because there's no way to go from a function that gives you some values of Y to one which combines arbitrary values of Y.
For an example, if we had X = Y = Int and I defined
combine x y | y < 0 = -10
| otherwise = y + 1
initial = 0
then since combine just adds one to y every time you use it on positive y, and the initial value is 0, folded is indistinguishable from length in terms of its output. Notice that since folded xs is never negative, it's also impossible to define a function unFold :: ([x] -> y) -> Fold x y that ever recovers our combine function. This boils down to the fact that fold is not injective; it carries different values of type Fold x y to the same value of type [x] -> y.
Thus I've proved two things: if unFold :: ([x] -> y) -> Fold x y then both fold.unFold /= id and now also unFold.fold /= id
I bet you're not convinced by this either, because you don't really care whether you got Fold 0 (\_ y -> y+1) or Fold 0 combine back from unFold folded, seeing as they have the same value when refolded! Let's narrow the goalposts one more time. Perhaps you want unFold to work whenever the function is obtainable via fold, and you're happy for it not to give you inconsistent answers as long as when you fold the result again, you get the same function. I can summarise that with this next question:
Could fold . unFold . fold = fold ?
i.e. Could you define unFold so that fold.unFold is the identity on the set of functions obtainable via fold?
I'm really convinced this isn't possible, because it's not a tractible problem to calculate the step function without retaining extra information about intermediate values on sublists.
Suppose we had
unFold f = Fold {start = f [], step = recoverstep f}
we need
recoverstep f x1 initial == f [x1]
so if there's an Eq instance for x (ring the alarm bells!), then recoverstep must have the same effect as
recoverstep f x1 y | y == initial = f [x1]
also we need
recoverstep f x2 (f [x1]) == f [x1,x2]
so if there's an Eq instance for x, then recoverstep must have the same effect as
recoverstep f x2 y | y == (f [x1]) = f [x1,x2]
but there's a massive problem here: the variable x1 is free in the right hand side of this equation.
This means that logically, we can't tell what value the step function should have on an x unless we already
know what values it has been used on. We would need to store the values of f [x1], f [x1,x2] etc in the Fold
data type to make it work, and this is the clincher as to why we can't define unFold. If you change the data type Fold
to allow us to store information about intermediate lists, I can see it would work, but as it stands it's impossible
to recover the context.
Similar to Dan's answer, but using a slightly different approach. Instead of pairing the accumulator with partial results which will be thrown away at the end, we add a "post-processing" function which will convert from the accumulator type to the final result.
The same "cheat" for unFold just does all the work in the post-processing step:
{-# LANGUAGE ExistentialQuantification #-}
data Fold a r = forall c. Fold
{ _start :: c
, _step :: a -> c -> c
, _result :: c -> r }
fold :: Fold a r -> [a] -> r
fold (Fold start step result) = result . foldr step start
unFold :: ([a] -> r) -> Fold a r
unFold f = Fold [] (:) f
makeFold :: r -> (a -> r -> r) -> Fold a r
makeFold start step = Fold start step id

Composing a chain of 2-argument functions

So I have a list of a functions of two arguments of the type [a -> a -> a]
I want to write a function which will take the list and compose them into a chain of functions which takes length+1 arguments composed on the left. For example if I have [f,g,h] all of types [a -> a -> a] I need to write a function which gives:
chain [f,g,h] = \a b c d -> f ( g ( h a b ) c ) d
Also if it helps, the functions are commutative in their arguments ( i.e. f x y = f y x for all x y ).
I can do this inside of a list comprehension given that I know the the number of functions in question, it would be almost exactly like the definition. It's the stretch from a fixed number of functions to a dynamic number that has me stumped.
This is what I have so far:
f xs = f' xs
where
f' [] = id
f' (x:xs) = \z -> x (f' xs) z
I think the logic is along the right path, it just doesn't type-check.
Thanks in advance!
The comment from n.m. is correct--this can't be done in any conventional way, because the result's type depends on the length of the input list. You need a much fancier type system to make that work. You could compromise in Haskell by using a list that encodes its length in the type, but that's painful and awkward.
Instead, since your arguments are all of the same type, you'd be much better served by creating a function that takes a list of values instead of multiple arguments. So the type you want is something like this: chain :: [a -> a -> a] -> [a] -> a
There are several ways to write such a function. Conceptually you want to start from the front of the argument list and the end of the function list, then apply the first function to the first argument to get something of type a -> a. From there, apply that function to the next argument, then apply the next function to the result, removing one element from each list and giving you a new function of type a -> a.
You'll need to handle the case where the list lengths don't match up correctly, as well. There's no way around that, other than the aforementioned type-encoded-lengths and the hassle associate with such.
I wonder, whether your "have a list of a functions" requirement is a real requirement or a workaround? I was faced with the same problem, but in my case set of functions was small and known at compile time. To be more precise, my task was to zip 4 lists with xor. And all I wanted is a compact notation to compose 3 binary functions. What I used is a small helper:
-- Binary Function Chain
bfc :: (c -> d) -> (a -> b -> c) -> a -> b -> d
bfc f g = \a b -> f (g a b)
For example:
ghci> ((+) `bfc` (*)) 5 3 2 -- (5 * 3) + 2
17
ghci> ((+) `bfc` (*) `bfc` (-)) 5 3 2 1 -- ((5 - 3) * 2) + 1
5
ghci> zipWith3 ((+) `bfc` (+)) [1,2] [3,4] [5,6]
[9,12]
ghci> getZipList $ (xor `bfc` xor `bfc` xor) <$> ZipList [1,2] <*> ZipList [3,4] <*> ZipList [5,6] <*> ZipList [7,8]
[0,8]
That doesn't answers the original question as it is, but hope still can be helpful since it covers pretty much what question subject line is about.

How does currying work?

I'm very new to Haskell and FP in general. I've read many of the writings that describe what currying is, but I haven't found an explanation to how it actually works.
Here is a function: (+) :: a -> (a -> a)
If I do (+) 4 7, the function takes 4 and returns a function that takes 7 and returns 11. But what happens to 4 ? What does that first function do with 4? What does (a -> a) do with 7?
Things get more confusing when I think about a more complicated function:
max' :: Int -> (Int -> Int)
max' m n | m > n = m
| otherwise = n
what does (Int -> Int) compare its parameter to? It only takes one parameter, but it needs two to do m > n.
Understanding higher-order functions
Haskell, as a functional language, supports higher-order functions (HOFs). In mathematics HOFs are called functionals, but you don't need any mathematics to understand them. In usual imperative programming, like in Java, functions can accept values, like integers and strings, do something with them, and return back a value of some other type.
But what if functions themselves were no different from values, and you could accept a function as an argument or return it from another function? f a b c = a + b - c is a boring function, it sums a and b and then substracts c. But the function could be more interesting, if we could generalize it, what if we'd want sometimes to sum a and b, but sometimes multiply? Or divide by c instead of subtracting?
Remember, (+) is just a function of 2 numbers that returns a number, there's nothing special about it, so any function of 2 numbers that returns a number could be in place of it. Writing g a b c = a * b - c, h a b c = a + b / c and so on just doesn't cut it for us, we need a general solution, we are programmers after all! Here how it is done in Haskell:
let f g h a b c = a `g` b `h` c in f (*) (/) 2 3 4 -- returns 1.5
And you can return functions too. Below we create a function that accepts a function and an argument and returns another function, which accepts a parameter and returns a result.
let g f n = (\m -> m `f` n); f = g (+) 2 in f 10 -- returns 12
A (\m -> m `f` n) construct is an anonymous function of 1 argument m that applies f to that m and n. Basically, when we call g (+) 2 we create a function of one argument, that just adds 2 to whatever it receives. So let f = g (+) 2 in f 10 equals 12 and let f = g (*) 5 in f 5 equals 25.
(See also my explanation of HOFs using Scheme as an example.)
Understanding currying
Currying is a technique that transforms a function of several arguments to a function of 1 argument that returns a function of 1 argument that returns a function of 1 argument... until it returns a value. It's easier than it sounds, for example we have a function of 2 arguments, like (+).
Now imagine that you could give only 1 argument to it, and it would return a function? You could use this function later to add this 1st argument, now encased in this new function, to something else. E.g.:
f n = (\m -> n - m)
g = f 10
g 8 -- would return 2
g 4 -- would return 6
Guess what, Haskell curries all functions by default. Technically speaking, there are no functions of multiple arguments in Haskell, only functions of one argument, some of which may return new functions of one argument.
It's evident from the types. Write :t (++) in interpreter, where (++) is a function that concatenates 2 strings together, it will return (++) :: [a] -> [a] -> [a]. The type is not [a],[a] -> [a], but [a] -> [a] -> [a], meaning that (++) accepts one list and returns a function of type [a] -> [a]. This new function can accept yet another list, and it will finally return a new list of type [a].
That's why function application syntax in Haskell has no parentheses and commas, compare Haskell's f a b c with Python's or Java's f(a, b, c). It's not some weird aesthetic decision, in Haskell function application goes from left to right, so f a b c is actually (((f a) b) c), which makes complete sense, once you know that f is curried by default.
In types, however, the association is from right to left, so [a] -> [a] -> [a] is equivalent to [a] -> ([a] -> [a]). They are the same thing in Haskell, Haskell treats them exactly the same. Which makes sense, because when you apply only one argument, you get back a function of type [a] -> [a].
On the other hand, check the type of map: (a -> b) -> [a] -> [b], it receives a function as its first argument, and that's why it has parentheses.
To really hammer down the concept of currying, try to find the types of the following expressions in the interpreter:
(+)
(+) 2
(+) 2 3
map
map (\x -> head x)
map (\x -> head x) ["conscience", "do", "cost"]
map head
map head ["conscience", "do", "cost"]
Partial application and sections
Now that you understand HOFs and currying, Haskell gives you some syntax to make code shorter. When you call a function with 1 or multiple arguments to get back a function that still accepts arguments, it's called partial application.
You understand already that instead of creating anonymous functions you can just partially apply a function, so instead of writing (\x -> replicate 3 x) you can just write (replicate 3). But what if you want to have a divide (/) operator instead of replicate? For infix functions Haskell allows you to partially apply it using either of arguments.
This is called sections: (2/) is equivalent to (\x -> 2 / x) and (/2) is equivalent to (\x -> x / 2). With backticks you can take a section of any binary function: (2`elem`) is equivalent to (\xs -> 2 `elem` xs).
But remember, any function is curried by default in Haskell and therefore always accepts one argument, so sections can be actually used with any function: let (+^) be some weird function that sums 4 arguments, then let (+^) a b c d = a + b + c in (2+^) 3 4 5 returns 14.
Compositions
Other handy tools to write concise and flexible code are composition and application operator. Composition operator (.) chains functions together. Application operator ($) just applies function on the left side to the argument on the right side, so f $ x is equivalent to f x. However ($) has the lowest precedence of all operators, so we can use it to get rid of parentheses: f (g x y) is equivalent to f $ g x y.
It is also helpful when we need to apply multiple functions to the same argument: map ($2) [(2+), (10-), (20/)] would yield [4,8,10]. (f . g . h) (x + y + z), f (g (h (x + y + z))), f $ g $ h $ x + y + z and f . g . h $ x + y + z are equivalent, but (.) and ($) are different things, so read Haskell: difference between . (dot) and $ (dollar sign) and parts from Learn You a Haskell to understand the difference.
You can think of it like that the function stores the argument and returns a new function that just demands the other argument(s). The new function already knows the first argument, as it is stored together with the function. This is handled internally by the compiler. If you want to know how this works exactly, you may be interested in this page although it may be a bit complicated if you are new to Haskell.
If a function call is fully saturated (so all arguments are passed at the same time), most compilers use an ordinary calling scheme, like in C.
Does this help?
max' = \m -> \n -> if (m > n)
then m
else n
Written as lambdas. max' is a value of a lambda that itself returns a lambda given some m, which returns the value.
Hence max' 4 is
max' 4 = \n -> if (4 > n)
then 4
else n
Something that may help is to think about how you could implement curry as a higher order function if Haskell didn't have built in support for it. Here is a Haskell implementation that works for a function on two arguments.
curry :: (a -> b -> c) -> a -> (b -> c)
curry f a = \b -> f a b
Now you can pass curry a function on two arguments and the first argument and it will return a function on one argument (this is an example of a closure.)
In ghci:
Prelude> let curry f a = \b -> f a b
Prelude> let g = curry (+) 5
Prelude> g 10
15
Prelude> g 15
20
Prelude>
Fortunately we don't have to do this in Haskell (you do in Lisp if you want currying) because support is built into the language.
If you come from C-like languages, their syntax might help you to understand it. For example in PHP the add function could be implemented as such:
function add($a) {
return function($b) use($a) {
return $a + $b;
};
}
Haskell is based on Lambda calculus. Internally what happens is that everything gets converted into a function. So your compiler evaluates (+) as follows
(+) :: Num a => a -> a -> a
(+) x y = \x -> (\y -> x + y)
That is, (+) :: a -> a -> a is essentially the same as (+) :: a -> (a -> a). Hope this helps.

What does eta reduce mean in the context of HLint

I'm looking at the tutorial http://haskell.org/haskellwiki/How_to_write_a_Haskell_program
import System.Environment
main :: IO ()
main = getArgs >>= print . haqify . head
haqify s = "Haq! " ++ s
When running this program under HLint it gives the following error;
./Haq.hs:11:1: Warning: Eta reduce
Found:
haqify s = "Haq! " ++ s
Why not:
haqify = ("Haq! " ++ )
Can someone shed some light on what exactly "Eta Reduce" means in this context?
Eta reduction is turning \x -> f x into f as long as f doesn't have a free occurence of x.
To check that they're the same, apply them to some value y:
(\x -> f x) y === f' y -- (where f' is obtained from f by substituting all x's by y)
=== f y -- since f has no free occurrences of x
Your definition of haqify is seen as \s -> "Haq! " ++ s, which is syntactic sugar for \s -> (++) "Haq! " s. That, in turn can be eta-reduced to (++) "Haq! ", or equivalently, using section notation for operators, ("Haq! " ++).
Well, eta reduction is (one way) to make point-free functions, and usually means that you can remove the last parameter of a function if it appears at the end on both sides of an expression.
f :: Int -> Int
g :: Int -> Int -> Int
f s = g 3 s
can be converted to
f = g 3
However, in this case it is slightly more complicated, since there is the syntactic sugar of two-parameter operator (++) on the rhs, which is type [a] -> [a] -> [a]. However, you can convert this to a more standard function:
haqify :: [Char] -> [Char]
haqify = (++) "Haq! "
Because (++) is an operator, there are other possibilities:
haqify = ("Haq! " ++ )
That is, the parens convert this into a one-parameter function which applies "Haq!" ++ to its argument.
From lambda calculus, we define eta conversion as the equality:
\x -> M x == M -- if x is not free in M.
See Barendregt, H. P. The Lambda Calculus: Its Syntax and Semantics, 1984.
In the Haskell context, see the definition on the Haskell wiki,
n eta conversion (also written η-conversion) is adding or dropping of abstraction over a function. For example, the following two values are equivalent under η-conversion:
\x -> abs x
and
abs
Converting from the first to the second would constitute an eta reduction, and moving from the second to the first would be an eta abstraction. The term 'eta conversion' can refer to the process in either direction.
Extensive use of η-reduction can lead to Pointfree programming. It is also typically used in certain compile-time optimisations.

Resources