Cognito authorization with two user pool - python-3.x

I have an API Gateway and two user pools, I want to implement Cognito on my endpoints supporting both user pools.
The idea I had was to create a lambda authorize which takes as input: the access_token and does a get on /oauth2/userInfo
of the two user pools, knowing that the request will only be satisfactory for only one user pool if the token is valid. And my lambda returned
For Get Ok -> "Effect": "Allow",
For Get Ko -> "Effect": "Deny"
like explain here:link
Questions
Is there another way to support authorization on two pools?
Is it normal to manage authorizations with access_token?
In case my lambda took as input the id_token instead of the access_token how can I verify that the id_token has been generated by one of my user pool
Thank you !

STANDARD BEHAVIOUR
There should be a single Authorization Server (AS) that your apps talk to. Partitioning users can be done for advanced purposes, such as multi-tenancy or storing Personally Identifiable Information (PII) in different databases per region.
Q1
A Cognito user pool is an entire Authorization Server - I would aim to use only one if possible, since this will keep the code in your apps simple.
If you have to proceed with a single app using multiple user pools, aim to get the API client to send you a hint that enables you to know which one is being used - perhaps via a value in a custom header during API requests:
x-mycompany-user-region: EU
x-mycompany-partner-id: ABC
This will enable you to implement a basic kind of content based routing. This type of header is only for routing and should be ot be used for security.
It is also possible to put a reverse proxy in front of Cognito to do this type of job - see this Curity article for details on this type of approach, where claims are used to route requests.
Q2
Yes - use access tokens containing or referencing scopes and claims. Note that Cognito may not allow you to customize access token JWT contents.
A way to get custom claims can be to send the access token to the user info endpoint, then cache results in the authorizer, as you seem to be doing. If it helps, see also this code of mine.
Q3
An ID token is a digitally verifiable assertion given to a UI as proof of authentication. It should not be used for authorization in APIs. It may be that Cognito has better support for customizing ID tokens - but it is not correct in OAuth terms (eg expiry is too long / no support for scopes).

Related

OAuth clarification

I've followed a training in Go as an introduction to microservices architecture a while ago. Getting back to this project I realise that I need more context as we've been quickly digging into the details of the implementations at the time...
I've drawn a simplified sequence diagram of 2 simple use cases:
The user logs in
The user is already logged in and make a purchase
(you can comment / modify the diagram at your convenience)
https://drive.google.com/file/d/1gWgkhJipUvWrVidkl7YFt_xlDmZYn_CX/view?usp=sharing
Here are the questions I have:
Here we're dealing with user authentication but what about client authentication? In the case of a web front end client, can I imagine storing an api_key and an api_secret in the env variables for the server that will be hosting this client? Because there use cases where the user is not logged but some services still needs to be available, but at the same time I only want my known clients (the web front and the mobile app) to be able to access those services (putting aside API Gateway solutions, and maybe other API Shields which would probably add another security layer against DOS etc.)
If the client logs in using Google/Facebook, the front app will receive an id_token that needs to be passed to the backend which would then verify the token ( https://developers.google.com/identity/sign-in/web/backend-auth ). In this particular case my OAuth API would not be used. Could please you confirm that it's the way it should be handled?
Many thanks.
EDIT 02/05/2022
Intro / Context
First thing first, Authorization is not Authentication.
Authentication is the process of verifying who a user is,
while authorization is the process of verifying what they have access to.
And like #Max said, OAuth is designed to manage Authorization and Open ID Connect (OIDC) is an extension of OAuth to manage Authentication on top of it.
The diagram I've exposed in my question is known in the OAuth world as the password grant, and, from the official documentation :
Because the client application has to collect the user's password and
send it to the authorization server, it is not recommended that this
grant be used at all anymore.
Authorization of my App (to get access to my APIs)
From the API perspective, we just want to ensure that the incoming requests are coming from the server that is hosting the App. So, in my case, it's simple machine-2-machine communication from backend server to backend server and there's no action required from the user. So, I must implement the Client Credentials Flow
...which would lead me to this flow:
https://drive.google.com/file/d/1qE9JpWRSRPa8z5iNxm7ocGkeT0E149Sv/view?usp=sharing (Feel free to comment / rectify )
Authentication of a user
Because OAuth knows nothing about authentication, I need an OIDC flow. The easiest one is based on the Authorization Code Flow with PKCE from OAuth below (only about authorization) ...
... but the difference is that we're passing an additional scope named openid in the authentication request (step 3), when the app performs the 2nd request to the token endpoint (step 7), the auth server returns an ID Token (which is a JWT containing user info in the payload -> authentication) in addition to the access_token (which do not contain user info but just "random string"). There's other OIDC flows with their pros & cons depending on the situation but it's another topic on its own (https://openid.net/specs/openid-connect-core-1_0.html)
User already identified by Google/Facebook
In case the client logs in using Google, the front app will receive an id_token. This token could be sent to the app server which would then make a request to the API Gateway, which then call the Auth api which would be in charge of verifying the token by calling the 3rd party auth server ( https://developers.google.com/identity/sign-in/web/backend-auth ).
In case of Facebook, we get back an access token, so I don't know how to deal with it ...
https://developers.facebook.com/docs/facebook-login/web
https://developers.facebook.com/docs/facebook-login/guides/advanced/manual-flow
Using Firebase, there's an onAuthStateChanged callback, so from the App perspective it will prevent request without the user being logged in, but from the API perspective, it doesn't guaranty that a request is coming from a logged in user...
https://firebase.google.com/docs/auth/web/manage-users#get_the_currently_signed-in_user
Warning: the answer below is not complete, it only serves to give a rough idea
Intro
OAuth2 is a protocol for authorization.
Grant Types
Over the OAuth2 protocol, you can use one of the "grant types" or "flow", one of these flows is illustrated in the picture you post and named password grant.
Each of these flows is realized for different scenarios, you rightly point the attention to how securely store the password on a web app.
For example for a front-end authentication (javascript / wasm) you can use a PKCE Flow where the secret_id is not used.
Endpoints
On OAuth2 there are two primary enpoints
Authorize endpoint - where you obtain the authorization code
Token endpoint - where you exchange the authorization code for the token(s)
Tokens
There are two types of tokens on OAuth2
Access Token
Refresh Token
The definition of token on OAuth2 is "an opaque string", you don't need to read it.
The access token is used against the API, this token has an expiration date, when it is expired the system use the refresh token to get another access_token whitout user interaction, when the refresh_token expire the user must re-authenticate again.
You can read the content of the access_token (which is a JWT token) from the JWT.io
Scopes
The Access token has, on its body, the scopes (i.e. Read email, read name, etc).
Scope is a mechanism in OAuth 2.0 to limit an application's access to a user's account.
Identity
On top of the OAuth2 are build other protocols OIDC aka IdToken aka Open Id Connect is one of them, in other terms OIDC protocol use the OAuth2 for establish an Authentication.
With the OIDC there is another token the id_token, this token came with the user's info and is NOT used has Authorizization in front the API.
There are also OIDC flows you can use to get the id_token and/or the access_token.
Conclusion
I suggest you read about OAuth2 from the references below and try different flows using the playground
References
Which oauth2 flow should I use
OAuth2
PKCE in more depth
My advice is to start with the data, which is the deeper area of OAuth.
USE AN AUTHORIZATION SERVER
This will enable you to keep your code simple. It will also handle Google / Facebook and many other forms of authentication for you, with zero impact on your code. The Curity Community Edition is a free and developer friendly option, though there are others. eg Keycloak, Ory Hydra.
PROTECT DATA
OAuth primarily gives you modern ways to protect data. Use scopes and claims to protect data across multiple microservices in a zero trust manner while securely maintaining user context. You will also need to manage joining identity and business data.
IMPLEMENT UI FLOWS CORRECTLY
Mobile apps use the AppAuth pattern. The current best practice for browser based apps is a Backend for Frontend approach. Both of these are tricky.
KEEP CODE STANDARDS BASED
All of the above Curity resources are based on OAuth related standards. If followed your apps will stay simple, with portable code, that can also work with other providers.
OAuth is very architectural though, and the best designs take time to learn, but you can learn the intricacies gradually. Our IAM Primer is a good starting point.

Is it possible to utilise Open ID Connect flows for authentication but then have another source of authorization rules?

My situation is this. I have a legacy Angular application which calls a Node API server. This Node server currently exposes a /login endpoint to which I pass a user/pwd from my Angular SPA. The Node server queries a local Active Directory instance (not ADFS) and if the user authenticates, it uses roles and privileges stored on the application database (not AD) to build a jwt containing this user's claims. The Angular application (there are actually 2) can then use the token contents to suppress menu options/views based on a user's permissions. On calling the API the right to use that endpoint is also evaluated against the passed in token.
We are now looking at moving our source of authentication to an oAuth2.0 provider such that customers can use their own ADFS or other identity provider. They will however need to retain control of authorization rules within my application itself, as administrators do not typically have access to Active Directory to maintain user rights therein.
I can't seem to find an OIDC pattern/workflow that addresses this use case. I was wondering if I could invoke the /authorize endpoint from my clients, but then pass the returned code into my existing Node server to invoke the /token endpoint. If that call was successful within Node then I thought I could keep building my custom JWT as I am now using a mix of information from my oAuth2 token/userinfo and the application database. I'm happy for my existing mechanisms to take care of token refreshes and revoking.
I think I'm making things harder by wanting to know my specific application claims within my client applications so that I can hide menu options. If it were just a case of protecting the API when called I'm guessing I could just do a lookup of permissions by sub every time a protected API was called.
I'm spooked that I can't find any posts of anyone doing anything similar. Am I missing the point of OIDC(to which I am very new!).
Thanks in advance...
Good question, because pretty much all real world authorization is based on domain specific claims, and this is often not explained well. The following notes describe the main behaviors to aim for, regardless of your provider. The Curity articles on scopes and claims provide further background on designing your authorization.
CONFIDENTIAL TOKENS
UIs can read claims from ID tokens, but should not read access tokens. Also, tokens returned to UIs should not contain sensitive data such as names, emails. There are two ways to keep tokens confidential:
The ID token should be a JWT with only a subject claim
The access token should be a JWT with only a subject claim, or should be an opaque token that is introspected
GETTING DOMAIN SPECIFIC CLAIMS IN UIs
How does a UI get the domain specific data it needs? The logical answer here is to send the access token to an API and get back one or both of these types of information:
Identity information from the token
Domain specific data that the API looks up
GETTING DOMAIN SPECIFIC CLAIMS IN APIs
How does an API get the domain specific data it needs from a JWT containing only a UUID subject claim? There are two options here:
The Authorization Server (AS) reaches out to domain specific data at the time of token issuance, to include custom claims in access tokens. The AS then stores the JWT and returns an opaque access token to the UI.
The API looks up domain specific claims when an access token is first received, and forms a Claims Principal consisting of both identity data and domain specific data. See my Node.js API code for an example.
MAPPING IDENTITY DATA TO BUSINESS DATA
At Curity we have a recent article on this topic that may also be useful to you for your migration. This will help you to design tokens and plan end-to-end flows so that the correct claims are made available to your APIs and UIs.
EXTERNAL IDENTITY PROVIDERS
These do not affect the architecture at all. Your UIs always redirect to the AS using OIDC, and the AS manages connections to the IDPs. The tokens issued to your applications are fully determined by the AS, regardless of whether the IDP used SAML etc.
You'll only get authentication from your OAuth provider. You'll have to manage authorization yourself. You won't be able to rely on OIDC in the SAML response or userinfo unless you can hook into the authentication process to inject the values you need. (AWS has a pre-token-gen hook that you can add custom claims to your SAML response.)
If I understand your current process correctly, you'll have to move the data you get from /userinfo to your application's database and provide a way for admins to manage those permissions.
I'm not sure this answer gives you enough information to figure out how to accomplish what you want. If you could let us know what frameworks and infrastructure you use, we might be able to point you to some specific tools that can help.

Multiple oauth clients for the same api

I'm trying to accomplish the following scenario.
I have and API at the moment and one web app. I have also create a new oauth client on my auth server (keycloak), which follows the implicit grant. I also used jwks on my nodejs api to do the token verification.
Now I want to create an SDK that will target the same API.
The questions is how do I get the SDK to retrieve an access token from the auth server. The first thought is that I will have to create a new client oauth client on the authserver and then use the client credential flow to get the access token. However, I dont know what should the behaviour of my API be like. At the moment it used jwks against a single audience. How should it be configured to verify access tokens from multiple clients (potentially thousand of them)
If you want multiple clients to call your API they should all use the same audience, and your first level of security will work.
The audience in access tokens represents the API(s) the token can be used against.
You will then need to use something else to authorize API requests, depending on the type of client and what they are allowed to do.
Configure each type of client in your auth server so that you are in control and know who is calling the API.
You may have 1000 clients but only 4 levels of privilege - in which case only configuring 4 OAuth clients may make sense.
One OAuth option you can use is give different clients different scopes. Scopes can represent high level privileges.
If a particular client calls an addOrder operation but does not have an Orders scope you could return a 403 response.
Often though API authorization needs to go beyond OAuth checks and apply custom rules based on the end user privileges.
If you can provide more info on your scenario I could provide a more complete answer.

Secure data access to RESTful API

I figured this has been answered before, but a quick SO search didn't yield anything.
I have a private API that is locked down by an APIKey. This key needs to be passed for each request. With this key you can access any part of the API. Obviously that's pretty open. For the most part this is acceptable. However, there are cases where I want to ensure that the request is sent by the owner of the data.
For example, consider an update or delete request. You shouldn't be able to make this request for someone else's data. So in addition to the APIKey, I'd like to have something else to ensure that this user making the request is authorized to perform that action.
I could require that an ownerID be passed with such request. But that's quickly forged. So what have I gained.
I am interested to hear what other members of SO have implemented in these situations. Individual APIKeys? Dual-authorization?
If it matters, my API follows the REST architecture and is developed with PHP/Apache.
API keys should be unique per user. This will verify the user and that they should have access to the data.
If you want to be even more secure you can have that api secret be used as a refresh token that can be used to retrieve an access token with an automated expiration.
SSL for all requests is also suggested.
Each API user has a unique API key. This key identifies them as a single user of the system. When dealing with more sensitive data, I've used client side certificates for auth, however Basic Auth + requiring SSL is usually sufficient.
When the request comes in, map the API key to the user and then determine if that user "owns" the resource they are trying to interact with.
The whole "determine the owner" part is a separate issue that can be tricky to do nicely in an API depending on how well the system was built. I can share how we've done that in the past as well, but figured that's a bit off topic.
Suggest you should consider using Oauth. In summary this is how it should work.
Each application making the API calls will need the respective application level APIkey for authorization through the Oauth process. Apikey here would just represent the application (client) identity.
Each end-user associated with the usage must authenticate themselves separately (independent of the apikey) during the Oauth authorization process. The users identity, associated context such as scope of authorization is then encoded into a token called access token.
Once the application obtains this access token, all subsequent API calls to access resources should use the access token, until expiry.
On the API implementation side, the access token validation should reveal the end-user context (including the scope of access that is granted during the Oauth process) and hence the access/authorization to use a specific resource can be managed by the resource server.

API Keys vs HTTP Authentication vs OAuth in a RESTful API

I'm working on building a RESTful API for one of the applications I maintain. We're currently looking to build various things into it that require more controlled access and security. While researching how to go about securing the API, I found a few different opinions on what form to use. I've seen some resources say HTTP-Auth is the way to go, while others prefer API keys, and even others (including the questions I found here on SO) swear by OAuth.
Then, of course, the ones that prefer, say, API keys, say that OAuth is designed for applications getting access on behalf of a user (as I understand it, such as signing into a non-Facebook site using your Facebook account), and not for a user directly accessing resources on a site they've specifically signed up for (such as the official Twitter client accessing the Twitter servers). However, the recommendations for OAuth seem to be even for the most basic of authentication needs.
My question, then, is - assuming it's all done over HTTPS, what are some of the practical differences between the three? When should one be considered over the others?
It depends on your needs. Do you need:
Identity – who claims to be making an API request?
Authentication – are they really who they say they are?
Authorization – are they allowed to do what they are trying to do?
or all three?
If you just need to identify the caller to keep track of volume or number of API Calls, use a simple API Key. Bear in mind that if the user you have issued the API key shares it with someone else, they will be able to call your API as well.
But, if you need Authorization as well, that is you need to provide access only to certain resources based on the caller of the API, then use oAuth.
Here's a good description: http://www.srimax.com/index.php/do-you-need-api-keys-api-identity-vs-authorization/
API Keys or even Tokens fall into the category of direct Authentication and Authorization mechanisms, as they grant access to exposed resources of the REST APIs. Such direct mechanisms can be used in delegation uses cases.
In order to get access to a resource or a set of resources exposed by REST endpoints, it is needed to check the requestor privileges according to its identity. First step of the workflow is then verifying the identity by authenticating the request; successive step is checking the identity against a set of defined rules to authorizing the level of access (i.e. read, write or read/write). Once the said steps are accomplished, a typical further concern is the allowed rate of request, meaning how many requests per second the requestor is allowed to perform towards the given resource(s).
OAuth (Open Authorization) is a standard protocol for delegated access, often used by major Internet Companies to grant access without providing the password. As clear, OAuth is protocol which fulfils the above mentioned concerns: Authentication and Authorization by providing secure delegated access to server resources on behalf of the resource owner. It is based on access Tokens mechanism which allow to the 3rd party to get access to the resource managed by the server on behalf of the resource owner. For example, ServiceX wants to access John Smith's Google Account on behalf of John, once John has authorized the delegation; ServiceX will be then issued a time-based Token to access the Google Account details, very likely in read access only.
The concept of API Key is very similar to OAuth Token described above. The major difference consists in the absence of delegation: the User directly requests the Key to the service provider for successive programmatic interactions. The case of API Key is time based as well: the Key as the OAuth Token is subject to a time lease, or expiration period.
As additional aspect, the Key as well as the Token may be subject to rate limiting by service contract, i.e. only a given number of requests per second can be served.
To recap, in reality there is no real difference between traditional Authentication and Authorization mechanisms and Key/Token-based versions. The paradigm is slightly different though: instead of keep reusing credentials at each and every interaction between client and server, a support Key/Token is used which makes the overall interaction experience smoother and likely more secure (often, following the JWT standard, Keys and Tokens are digitally signed by the server to avoid crafting).
Direct Authentication and Authorization: Key-based protocols as a variant of the traditional credentials-based versions.
Delegated Authentication and Authorization: like OAuth-based protocols, which in turn uses Tokens, again as a variant of credential-based versions (overall goal is not disclosing the password to any 3rd party).
Both categories use a traditional identity verification workflow for the very first interaction with the server owning the interested resource(s).

Resources