Given a small dataset as follows:
id a b
0 1 lol lolec
1 2 rambo ram
2 3 ki pio
3 4 iloc loc
4 5 strip rstrip
5 6 lambda lambda
I would like to create a new column c based on the following criterion:
If a is equal or substring of b or vise versa, then create a new column c with value 1, otherwise keep it as 0.
How could I do that in Pandas or Python?
The expected result:
id a b c
0 1 lol lolec 1
1 2 rambo ram 1
2 3 ki pio 0
3 4 iloc loc 1
4 5 strip rstrip 1
5 6 lambda lambda 1
To check whether a is in b or b is in a, we can use:
df.apply(lambda x: x.a in x.b, axis=1)
df.apply(lambda x: x.b in x.a, axis=1)
Use zip and list comprehension:
df['c'] = [int(a in b or b in a) for a, b in zip(df.a, df.b)]
df
id a b c
0 1 lol lolec 1
1 2 rambo ram 1
2 3 ki pio 0
3 4 iloc loc 1
4 5 strip rstrip 1
5 6 lambda lambda 1
Or use apply, just combine both conditions with or:
df['c'] = df.apply(lambda r: int(r.a in r.b or r.b in r.a), axis=1)
Related
This is a question about how to make things properly with pandas (I use version 1.0).
Let say I have a DataFrame with missions which contains an origin and one or more destinations:
mid from to
0 0 A [C]
1 1 A [B, C]
2 2 B [B]
3 3 C [D, E, F]
Eg.: For the mission (mid=1) people will travel from A to B, then from B to C and finally from C to A. Notice, that I have no control on the datamodel of the input DataFrame.
I would like to compute metrics on each travel of the mission. The expected output would be exactly:
tid mid from to
0 0 0 A C
1 1 0 C A
2 2 1 A B
3 3 1 B C
4 4 1 C A
5 5 2 B B
6 6 2 B B
7 7 3 C D
8 8 3 D E
9 9 3 E F
10 10 3 F C
I have found a way to achieve my goal. Please, find bellow the MCVE:
import pandas as pd
# Input:
df = pd.DataFrame(
[["A", ["C"]],
["A", ["B", "C"]],
["B", ["B"]],
["C", ["D", "E", "F"]]],
columns = ["from", "to"]
).reset_index().rename(columns={'index': 'mid'})
# Create chain:
df['chain'] = df.apply(lambda x: list(x['from']) + x['to'] + list(x['from']), axis=1)
# Explode chain:
df = df.explode('chain')
# Shift to create travel:
df['end'] = df.groupby("mid")["chain"].shift(-1)
# Remove extra row, clean, reindex and rename:
df = df.dropna(subset=['end']).reset_index(drop=True).reset_index().rename(columns={'index': 'tid'})
df = df.drop(['from', 'to'], axis=1).rename(columns={'chain': 'from', 'end': 'to'})
My question is: Is there a better/easier way to make it with Pandas? By saying better I mean, not necessary more performant (it can be off course), but more readable and intuitive.
Your operation is basically explode and concat:
# turn series of lists in to single series
tmp = df[['mid','to']].explode('to')
# new `from` is concatenation of `from` and the list
df1 = pd.concat((df[['mid','from']],
tmp.rename(columns={'to':'from'})
)
).sort_index()
# new `to` is concatenation of list and `to``
df2 = pd.concat((tmp,
df[['mid','from']].rename(columns={'from':'to'})
)
).sort_index()
df1['to'] = df2['to']
Output:
mid from to
0 0 A C
0 0 C A
1 1 A B
1 1 B C
1 1 C A
2 2 B B
2 2 B B
3 3 C D
3 3 D E
3 3 E F
3 3 F C
If you don't mind re-constructing the entire DataFrame then you can clean it up a bit with np.roll to get the pairs of destinations and then assign the value of mid based on the number of trips (length of each sublist in l)
import pandas as pd
import numpy as np
from itertools import chain
l = [[fr]+to for fr,to in zip(df['from'], df['to'])]
df1 = (pd.DataFrame(data=chain.from_iterable([zip(sl, np.roll(sl, -1)) for sl in l]),
columns=['from', 'to'])
.assign(mid=np.repeat(df['mid'].to_numpy(), [*map(len, l)])))
from to mid
0 A C 0
1 C A 0
2 A B 1
3 B C 1
4 C A 1
5 B B 2
6 B B 2
7 C D 3
8 D E 3
9 E F 3
10 F C 3
I have a table with 7 columns where for every few rows, 6 columns remain same and only the 7th changes. I would like to merge all these rows into one row, and combine the value of the 7th column into a list.
So if I have this dataframe:
A B C
0 a 1 2
1 b 3 4
2 c 5 6
3 c 7 6
I would like to convert it to this:
A B C
0 a 1 2
1 b 3 4
2 c [5, 7] 6
Since the values of column A and C were same in row 2 and 3, they would get collapsed into a single row and the values of B will be combined into a list.
Melt, explode, and pivot don't seem to have such functionality. How can achieve this using Pandas?
Use GroupBy.agg with custom lambda function, last add DataFrame.reindex for same order of columns by original:
f = lambda x: x.tolist() if len(x) > 1 else x
df = df.groupby(['A','C'])['B'].agg(f).reset_index().reindex(df.columns, axis=1)
You can also create columns names dynamic like:
changes = ['B']
cols = df.columns.difference(changes).tolist()
f = lambda x: x.tolist() if len(x) > 1 else x
df = df.groupby(cols)[changes].agg(f).reset_index().reindex(df.columns, axis=1)
print (df)
A B C
0 a 1 2
1 b 3 4
2 c [5, 7] 6
For all lists in column solution is simplier:
changes = ['B']
cols = df.columns.difference(changes).tolist()
df = df.groupby(cols)[changes].agg(list).reset_index().reindex(df.columns, axis=1)
print (df)
A B C
0 a [1] 2
1 b [3] 4
2 c [5, 7] 6
Here is another approach using pivot_table and applymap:
(df.pivot_table(index='A',aggfunc=list).applymap(lambda x: x[0] if len(set(x))==1 else x)
.reset_index())
A B C
0 a 1 2
1 b 3 4
2 c [5, 7] 6
I have a dataframe as below.
My dataframe as below.
ID list
1 a, b, c
2 a, s
3 NA
5 f, j, l
I need to break each items in the list column(String) into independent row as below:
ID item
1 a
1 b
1 c
2 a
2 s
3 NA
5 f
5 j
5 l
Thanks.
Use str.split to separate your items then explode:
print (df.assign(list=df["list"].str.split(", ")).explode("list"))
ID list
0 1 a
0 1 b
0 1 c
1 2 a
1 2 s
2 3 NaN
3 5 f
3 5 j
3 5 l
A beginners approach : Just another way of doing the same thing using pd.DataFrame.stack
df['list'] = df['list'].map(lambda x : str(x).split(','))
dfOut = pd.DataFrame(df['list'].values.tolist())
dfOut.index = df['ID']
dfOut = dfOut.stack().reset_index()
del dfOut['level_1']
dfOut.rename(columns = {0 : 'list'}, inplace = True)
Output:
ID list
0 1 a
1 1 b
2 1 c
3 2 a
4 2 s
5 3 nan
6 5 f
7 5 j
8 5 l
I have dataframe1 with columns a,b,c,d with 5 rows.
I also have another dataframe2 with columns e,f,g,h
Let's say I want to copy columns a,b in row 3 from dataframe1 to columns f,g in row 3 at dataframe2.
I tried to use this code:
dataframe2.loc[3,['f','g']] = dataframe1.loc[3,['a','b']].
The results was NaN in dataframe2.
Any ideas how can I solve it?
One idea is convert to numpy array for avoid alignment data by columns names:
dataframe2.loc[3,['f','g']] = dataframe1.loc[3,['a','b']].values
Sample:
dataframe1 = pd.DataFrame({'a':list('abcdef'),
'b':[4,5,4,5,5,4],
'c':[7,8,9,4,2,3]})
print (dataframe1)
a b c
0 a 4 7
1 b 5 8
2 c 4 9
3 d 5 4
4 e 5 2
5 f 4 3
dataframe2 = pd.DataFrame({'f':list('HIJK'),
'g':[0,0,7,1],
'h':[0,1,0,1]})
print (dataframe2)
f g h
0 H 0 0
1 I 0 1
2 J 7 0
3 K 1 1
dataframe2.loc[3,['f','g']] = dataframe1.loc[3,['a','b']].values
print (dataframe2)
f g h
0 H 0 0
1 I 0 1
2 J 7 0
3 d 5 1
suppose I have a dataframe with multi columns.
a b c
1
2
3
How to convert it to a single columns dataframe
1 a
2 a
3 a
1 b
2 b
3 b
1 c
2 c
3 c
please note that the former is a Dataframe other than Panel
Use melt:
df = df.reset_index().melt('index', var_name='col').set_index('index')[['col']]
print (df)
col
index
1 a
2 a
3 a
1 b
2 b
3 b
1 c
2 c
3 c
Or numpy.repeat and numpy.tile with DataFrame constructor::
a = np.repeat(df.columns, len(df))
b = np.tile(df.index, len(df.columns))
df = pd.DataFrame(a, index=b, columns=['col'])
print (df)
col
1 a
2 a
3 a
1 b
2 b
3 b
1 c
2 c
3 c
another way is,
pd.DataFrame(list(itertools.product(df.index, df.columns.values))).set_index([0])
Output:
1
0
1 a
1 b
1 c
2 a
2 b
2 c
3 a
3 b
3 c
For exact output:
use sort_values
print pd.DataFrame(list(itertools.product(df.index, df.columns.values))).set_index([0]).sort_values(by=[1])
1
0
1 a
2 a
3 a
1 b
2 b
3 b
1 c
2 c
3 c