I have a dataframe that has time series data in it and some categorical data
| cat | TS1 | TS2 | ... |
| A | 1 | null | ... |
| A | 1 | 20 | ... |
| B | null | null | ... |
| A | null | null | ... |
| B | 1 | 100 | ... |
I would like to find out how many null values there are per column per group, so an expected output would look something like:
| cat | TS1 | TS2 |
| A | 1 | 2 |
| B | 1 | 1 |
Currently I can this for one of the groups with something like this
df_null_cats = df.where(df.cat == "A").where(reduce(lambda x, y: x | y, (col(c).isNull() for c in df.columns))).select([count(when(isnan(c) | col(c).isNull(), c)).alias(c) for c in df_nulls.columns])
but I am struggling to get one that would work for the whole dataframe.
You can use groupBy and aggregation function to get required output.
from pyspark.sql import *
from pyspark.sql.functions import *
spark = SparkSession.builder.master("local").getOrCreate()
# Sample dataframe
in_values = [("A", 1, None),
("A", 1, 20),
("B", None, None),
("A", None, None),
("B", 1, 100)]
in_df = spark.createDataFrame(in_values, "cat string, TS1 int, TS2 int")
columns = in_df.columns
# Ignoring groupBy column and considering cols which are required in aggregation
columns.remove("cat")
agg_expression = [sum(when(in_df[x].isNull(), 1).otherwise(0)).alias(x) for x in columns]
in_df.groupby("cat").agg(*agg_expression).show()
+---+---+---+
|cat|TS1|TS2|
+---+---+---+
| B| 1| 1|
| A| 1| 2|
+---+---+---+
"Sum" function can be used with condition for null value. On Scala:
val df = Seq(
(Some("A"), Some(1), None),
(Some("A"), Some(1), Some(20)),
(Some("B"), None, None),
(Some("A"), None, None),
(Some("B"), Some(1), Some(100)),
).toDF("cat", "TS1", "TS2")
val aggregatorColumns = df
.columns
.tail
.map(columnName => sum(when(col(columnName).isNull, 1).otherwise(0)).alias(columnName))
df
.groupBy("cat")
.agg(
aggregatorColumns.head, aggregatorColumns.tail: _*
)
#Mohana's answer is good but it's still not dynamic: you need to code the operation for every single column.
In my answer below, we can use Pandas UDFs and applyInPandas to write a simple function in Pandas which will then be applied to our PySpark dataframe.
import pandas as pd
from pyspark.sql.types import *
in_values = [("A", 1, None),
("A", 1, 20),
("B", None, None),
("A", None, None),
("B", 1, 100)]
df = spark.createDataFrame(in_values, "cat string, TS1 int, TS2 int")
# define output schema: same column names, but we must ensure that the output type is integer
output_schema = StructType(
[StructField('cat', StringType())] + \
[StructField(col, IntegerType(), True) for col in [c for c in df.columns if c.startswith('TS')]]
)
# custom Python function to define aggregations in Pandas
def null_count(pdf):
columns = [c for c in pdf.columns if c.startswith('TS')]
result = pdf\
.groupby('cat')[columns]\
.agg(lambda x: x.isnull().sum())\
.reset_index()
return result
# use applyInPandas
df\
.groupby('cat')\
.applyInPandas(null_count, output_schema)\
.show()
+---+---+---+
|cat|TS1|TS2|
+---+---+---+
| A| 1| 2|
| B| 1| 1|
+---+---+---+
Related
I have below lists,
val col1 = List(1,2,3,4,5)
val col2 = List("a", "b", "c", "d", "e")
val col3 = List(6,7,8)
Requirement is to create a dataframe as below in Scala,
--------------------
| col1 | col2| col3|
--------------------
| 1 | a | 6 |
| 2 | b | 7 |
| 3 | c | 8 |
| 4 | d | null|
| 5 | e | null|
--------------------
Thank you.
If you're using Scala 2.12 or older, zipAll function may be helpful. Also using Option for nullability.
val data = col1.map(Option.apply)
.zipAll(col2.map(Option.apply), None, None)
.zipAll(col3.map(Option.apply), (None, None), None)
.map { case ((c1, c2), c3) => (c1, c2, c3) }
val df = data.toDF("col1", "col2", "col3")
Build rows iterating over indexes to get
import sparkSession.implicits._
val df = List((1,’a’),(2,’b’)).toDF()
Consider that I have two Dataframes DF1 and DF2 with the same schema.
what I want to do is that :
For each row in DF1,
if DF1.uniqueId exists in DF2 and type is new, then add to DF2 with a repeat count.
if DF1.uniqueId exists in DF2 and type is old, change DF2 type to that of DF1 type (old).
if DF1.uniqueId does not exists in DF2 and type is new, add a new row to DF2.
if DF1.uniqueId does not exist in DF2 and type is old, move that row to a new table -DF3
ie. if the tables are as shown below, the resultant or the updated DF2 should be like resultDF2 table below
DF1
+----------+--------------------------+
|UniqueID |type_ |
+----------+--------------------------+
|1 |new |
|1 |new |
|1 |new |
|2 |old |
|1 |new |
+----------+--------------------------+
DF2
+----------+--------------------------+
|UniqueID |type_ |
+----------+--------------------------+
| | |
+----------+--------------------------+
resultDF2
+----------+--------------------------++----------+--------------------------+
|UniqueID |type_ | repeatCount |
+----------+--------------------------++----------+--------------------------+
| 1 | new | 3 |
+----------+--------------------------++----------+--------------------------+
resultDF3
+----------+--------------------------++----------+--------------------------+
|UniqueID |type_ | repeatCount |
+----------+--------------------------++----------+--------------------------+
| 1 | old | 0 |
+----------+--------------------------++----------+--------------------------+
** if there is only one entry repeatCount is zero.
I am trying to achieve this using pyspark.
Can anyone please suggest me with any pointers on how to achieve this considering that I have both the tables in-memory.
The desired output can be obtained by:
Group df1 on UniqueId and get repeatCount, during this operation remove UniqueId that have old and new type_.
Apply a Full Join between dataframe from step 1 and df2.
From the joined result, remove rows where df.UniqueId is absent from df2 and df1.type_ is old.
Finally, select the UniqueID, type_ and repeatCount.
from pyspark.sql import functions as F
data = [(1, "new",), # Not exists and new
(1, "new",),
(1, "new",),
(2, "old",), # Not exists and old
(1, "new",),
(3, "old",), # cancel out
(3, "new",), # cancel out
(4, "new",), # one entry count zero example
(5, "new",), # Exists and new
(6, "old",), ] # Exists and old
df1 = spark.createDataFrame(data, ("UniqueID", "type_", ))
df2 = spark.createDataFrame([(5, "new", ), (6, "new", ), ], ("UniqueID", "type_", ))
df1_grouped = (df1.groupBy("UniqueID").agg(F.collect_set("type_").alias("types_"),
(F.count("type_") - F.lit(1)).alias("repeatCount"))
.filter(F.size(F.col("types_")) == 1) # when more than one type of `type_` is present they cancel out
.withColumn("type_", F.col("types_")[0])
.drop("types_")
)
id_not_exists_old = (df2["UniqueID"].isNull() & (df1_grouped["type_"] == F.lit("old")))
(df1_grouped.join(df2, df1_grouped["UniqueID"] == df2["UniqueID"], "full")
.filter(~(id_not_exists_old))
.select(df1_grouped["UniqueID"], df1_grouped["type_"], "repeatCount")
).show()
"""
+--------+-----+-----------+
|UniqueID|type_|repeatCount|
+--------+-----+-----------+
| 1| new| 3|
| 4| new| 0|
| 5| new| 0|
| 6| old| 0|
+--------+-----+-----------+
"""
I am trying to acheive the following,
Lets say I have a dataframe with the following columns
id | name | alias
-------------------
1 | abc | short
1 | abc | ailas-long-1
1 | abc | another-long-alias
2 | xyz | short_alias
2 | xyz | same_length
3 | def | alias_1
I want to groupby id and name and select the shorter alias,
The output I am expecting is
id | name | alias
-------------------
1 | abc | short
2 | xyz | short_alias
3 | def | alias_1
I can achevie this using window and row_number, is there anyother efficient method to get the same result. In general, the thrid column filter condition can be anything in this case its the length of the field.
Any help would be much appreciated.
Thank you.
All you need to do is use length inbuilt function and use that in window function as
from pyspark.sql import functions as f
from pyspark.sql import Window
windowSpec = Window.partitionBy('id', 'name').orderBy('length')
df.withColumn('length', f.length('alias'))\
.withColumn('length', f.row_number().over(windowSpec))\
.filter(f.col('length') == 1)\
.drop('length')\
.show(truncate=False)
which should give you
+---+----+-----------+
|id |name|alias |
+---+----+-----------+
|3 |def |alias_1 |
|1 |abc |short |
|2 |xyz |short_alias|
+---+----+-----------+
A solution without window (Not very pretty..) and the easiest, in my opinion, rdd solution:
from pyspark.sql import functions as F
from pyspark.sql import HiveContext
hiveCtx = HiveContext(sc)
rdd = sc.parallelize([(1 , "abc" , "short-alias"),
(1 , "abc" , "short"),
(1 , "abc" , "ailas-long-1"),
(1 , "abc" , "another-long-alias"),
(2 , "xyz" , "same_length"),
(2 , "xyz" , "same_length1"),
(3 , "def" , "short_alias") ])
df = hiveCtx.createDataFrame(\
rdd, ["id", "name", "alias"])
len_df = df.groupBy(["id", "name"]).agg(F.min(F.length("alias")).alias("alias_len"))
df = df.withColumn("alias_len", F.length("alias"))
cond = ["alias_len", "id", "name"]
df.join(len_df, cond).show()
print rdd.map(lambda x: ((x[0], x[1]), x[2]))\
.reduceByKey(lambda x,y: x if len(x) < len(y) else y ).collect()
Output:
+---------+---+----+-----------+
|alias_len| id|name| alias|
+---------+---+----+-----------+
| 11| 3| def|short_alias|
| 11| 2| xyz|same_length|
| 5| 1| abc| short|
+---------+---+----+-----------+
[((2, 'xyz'), 'same_length'), ((3, 'def'), 'short_alias'), ((1, 'abc'), 'short')]
I am trying to combine multiple rows in a spark dataframe based on a condition:
This is the dataframe I have(df):
|username | qid | row_no | text |
---------------------------------
| a | 1 | 1 | this |
| a | 1 | 2 | is |
| d | 2 | 1 | the |
| a | 1 | 3 | text |
| d | 2 | 2 | ball |
I want it to look like this
|username | qid | row_no | text |
---------------------------------------
| a | 1 | 1,2,3 | This is text|
| b | 2 | 1,2 | The ball |
I am using spark 1.5.2 it does not have collect_list function
collect_list showed up only in 1.6.
I'd go through the underlying RDD. Here's how:
data_df.show()
+--------+---+------+----+
|username|qid|row_no|text|
+--------+---+------+----+
| d| 2| 2|ball|
| a| 1| 1|this|
| a| 1| 3|text|
| a| 1| 2| is|
| d| 2| 1| the|
+--------+---+------+----+
Then this
reduced = data_df\
.rdd\
.map(lambda row: ((row[0], row[1]), [(row[2], row[3])]))\
.reduceByKey(lambda x,y: x+y)\
.map(lambda row: (row[0], sorted(row[1], key=lambda text: text[0]))) \
.map(lambda row: (
row[0][0],
row[0][1],
','.join([str(e[0]) for e in row[1]]),
' '.join([str(e[1]) for e in row[1]])
)
)
schema_red = typ.StructType([
typ.StructField('username', typ.StringType(), False),
typ.StructField('qid', typ.IntegerType(), False),
typ.StructField('row_no', typ.StringType(), False),
typ.StructField('text', typ.StringType(), False)
])
df_red = sqlContext.createDataFrame(reduced, schema_red)
df_red.show()
The above produced the following:
+--------+---+------+------------+
|username|qid|row_no| text|
+--------+---+------+------------+
| d| 2| 1,2| the ball|
| a| 1| 1,2,3|this is text|
+--------+---+------+------------+
In pandas
df4 = pd.DataFrame([
['a', 1, 1, 'this'],
['a', 1, 2, 'is'],
['d', 2, 1, 'the'],
['a', 1, 3, 'text'],
['d', 2, 2, 'ball']
], columns=['username', 'qid', 'row_no', 'text'])
df_groupped=df4.sort_values(by=['qid', 'row_no']).groupby(['username', 'qid'])
df3 = pd.DataFrame()
df3['row_no'] = df_groupped.apply(lambda row: ','.join([str(e) for e in row['row_no']]))
df3['text'] = df_groupped.apply(lambda row: ' '.join(row['text']))
df3 = df3.reset_index()
You can apply groupBy on username and qid column then follow by agg() method you can use collect_list() method like this
import pyspark.sql.functions as func
then you will have collect_list()or some other important functions
for detail abput groupBy and agg you can follow this URL.
Hope this solves your problem
Thanks
Using Spark 1.5.1,
I've been trying to forward fill null values with the last known observation for one column of my DataFrame.
It is possible to start with a null value and for this case I would to backward fill this null value with the first knwn observation. However, If that too complicates the code, this point can be skipped.
In this post, a solution in Scala was provided for a very similar problem by zero323.
But, I don't know Scala and I don't succeed to ''translate'' it in Pyspark API code. It's possible to do it with Pyspark ?
Thanks for your help.
Below, a simple example sample input:
| cookie_ID | Time | User_ID
| ------------- | -------- |-------------
| 1 | 2015-12-01 | null
| 1 | 2015-12-02 | U1
| 1 | 2015-12-03 | U1
| 1 | 2015-12-04 | null
| 1 | 2015-12-05 | null
| 1 | 2015-12-06 | U2
| 1 | 2015-12-07 | null
| 1 | 2015-12-08 | U1
| 1 | 2015-12-09 | null
| 2 | 2015-12-03 | null
| 2 | 2015-12-04 | U3
| 2 | 2015-12-05 | null
| 2 | 2015-12-06 | U4
And the expected output:
| cookie_ID | Time | User_ID
| ------------- | -------- |-------------
| 1 | 2015-12-01 | U1
| 1 | 2015-12-02 | U1
| 1 | 2015-12-03 | U1
| 1 | 2015-12-04 | U1
| 1 | 2015-12-05 | U1
| 1 | 2015-12-06 | U2
| 1 | 2015-12-07 | U2
| 1 | 2015-12-08 | U1
| 1 | 2015-12-09 | U1
| 2 | 2015-12-03 | U3
| 2 | 2015-12-04 | U3
| 2 | 2015-12-05 | U3
| 2 | 2015-12-06 | U4
Another workaround to get this working, is to try something like this:
from pyspark.sql import functions as F
from pyspark.sql.window import Window
window = (
Window
.partitionBy('cookie_id')
.orderBy('Time')
.rowsBetween(Window.unboundedPreceding, Window.currentRow)
)
final = (
joined
.withColumn('UserIDFilled', F.last('User_ID', ignorenulls=True).over(window))
)
So what this is doing is that it constructs your window based on the partition key and the order column. It also tells the window to look back all rows within the window up to the current row. Finally, at each row, you return the last value that is not null (which remember, according to your window, it includes your current row)
The partitioned example code from Spark / Scala: forward fill with last observation in pyspark is shown. This only works for data that can be partitioned.
Load the data
values = [
(1, "2015-12-01", None),
(1, "2015-12-02", "U1"),
(1, "2015-12-02", "U1"),
(1, "2015-12-03", "U2"),
(1, "2015-12-04", None),
(1, "2015-12-05", None),
(2, "2015-12-04", None),
(2, "2015-12-03", None),
(2, "2015-12-02", "U3"),
(2, "2015-12-05", None),
]
rdd = sc.parallelize(values)
df = rdd.toDF(["cookie_id", "c_date", "user_id"])
df = df.withColumn("c_date", df.c_date.cast("date"))
df.show()
The DataFrame is
+---------+----------+-------+
|cookie_id| c_date|user_id|
+---------+----------+-------+
| 1|2015-12-01| null|
| 1|2015-12-02| U1|
| 1|2015-12-02| U1|
| 1|2015-12-03| U2|
| 1|2015-12-04| null|
| 1|2015-12-05| null|
| 2|2015-12-04| null|
| 2|2015-12-03| null|
| 2|2015-12-02| U3|
| 2|2015-12-05| null|
+---------+----------+-------+
Column used to sort the partitions
# get the sort key
def getKey(item):
return item.c_date
The fill function. Can be used to fill in multiple columns if necessary.
# fill function
def fill(x):
out = []
last_val = None
for v in x:
if v["user_id"] is None:
data = [v["cookie_id"], v["c_date"], last_val]
else:
data = [v["cookie_id"], v["c_date"], v["user_id"]]
last_val = v["user_id"]
out.append(data)
return out
Convert to rdd, partition, sort and fill the missing values
# Partition the data
rdd = df.rdd.groupBy(lambda x: x.cookie_id).mapValues(list)
# Sort the data by date
rdd = rdd.mapValues(lambda x: sorted(x, key=getKey))
# fill missing value and flatten
rdd = rdd.mapValues(fill).flatMapValues(lambda x: x)
# discard the key
rdd = rdd.map(lambda v: v[1])
Convert back to DataFrame
df_out = sqlContext.createDataFrame(rdd)
df_out.show()
The output is
+---+----------+----+
| _1| _2| _3|
+---+----------+----+
| 1|2015-12-01|null|
| 1|2015-12-02| U1|
| 1|2015-12-02| U1|
| 1|2015-12-03| U2|
| 1|2015-12-04| U2|
| 1|2015-12-05| U2|
| 2|2015-12-02| U3|
| 2|2015-12-03| U3|
| 2|2015-12-04| U3|
| 2|2015-12-05| U3|
+---+----------+----+
Hope you find this forward fill function useful. It is written using native pyspark function. Neither udf nor rdd being used (both of them are very slow, especially UDF!).
Let's use example provided by #Sid.
values = [
(1, "2015-12-01", None),
(1, "2015-12-02", "U1"),
(1, "2015-12-02", "U1"),
(1, "2015-12-03", "U2"),
(1, "2015-12-04", None),
(1, "2015-12-05", None),
(2, "2015-12-04", None),
(2, "2015-12-03", None),
(2, "2015-12-02", "U3"),
(2, "2015-12-05", None),
]
df = spark.createDataFrame(values, ['cookie_ID', 'Time', 'User_ID'])
Functions:
def cum_sum(df, sum_col , order_col, cum_sum_col_nm='cum_sum'):
'''Find cumulative sum of a column.
Parameters
-----------
sum_col : String
Column to perform cumulative sum.
order_col : List
Column/columns to sort for cumulative sum.
cum_sum_col_nm : String
The name of the resulting cum_sum column.
Return
-------
df : DataFrame
Dataframe with additional "cum_sum_col_nm".
'''
df = df.withColumn('tmp', lit('tmp'))
windowval = (Window.partitionBy('tmp')
.orderBy(order_col)
.rangeBetween(Window.unboundedPreceding, 0))
df = df.withColumn('cum_sum', sum(sum_col).over(windowval).alias('cumsum').cast(StringType()))
df = df.drop('tmp')
return df
def forward_fill(df, order_col, fill_col, fill_col_name=None):
'''Forward fill a column by a column/set of columns (order_col).
Parameters:
------------
df: Dataframe
order_col: String or List of string
fill_col: String (Only work for a column for this version.)
Return:
---------
df: Dataframe
Return df with the filled_cols.
'''
# "value" and "constant" are tmp columns created ton enable forward fill.
df = df.withColumn('value', when(col(fill_col).isNull(), 0).otherwise(1))
df = cum_sum(df, 'value', order_col).drop('value')
df = df.withColumn(fill_col,
when(col(fill_col).isNull(), 'constant').otherwise(col(fill_col)))
win = (Window.partitionBy('cum_sum')
.orderBy(order_col))
if not fill_col_name:
fill_col_name = 'ffill_{}'.format(fill_col)
df = df.withColumn(fill_col_name, collect_list(fill_col).over(win)[0])
df = df.drop('cum_sum')
df = df.withColumn(fill_col_name, when(col(fill_col_name)=='constant', None).otherwise(col(fill_col_name)))
df = df.withColumn(fill_col, when(col(fill_col)=='constant', None).otherwise(col(fill_col)))
return df
Let's see the results.
ffilled_df = forward_fill(df,
order_col=['cookie_ID', 'Time'],
fill_col='User_ID',
fill_col_name = 'User_ID_ffil')
ffilled_df.sort(['cookie_ID', 'Time']).show()
// Forward filling
w1 = Window.partitionBy('cookie_id').orderBy('c_date').rowsBetween(Window.unboundedPreceding,0)
w2 = w1.rowsBetween(Window.unboundedPreceding, Window.unboundedFollowing)
//Backward filling
final_df = df.withColumn('UserIDFilled', F.coalesce(F.last('user_id', True).over(w1),
F.first('user_id',True).over(w2)))
final_df.orderBy('cookie_id', 'c_date').show(truncate=False)
+---------+----------+-------+------------+
|cookie_id|c_date |user_id|UserIDFilled|
+---------+----------+-------+------------+
|1 |2015-12-01|null |U1 |
|1 |2015-12-02|U1 |U1 |
|1 |2015-12-02|U1 |U1 |
|1 |2015-12-03|U2 |U2 |
|1 |2015-12-04|null |U2 |
|1 |2015-12-05|null |U2 |
|2 |2015-12-02|U3 |U3 |
|2 |2015-12-03|null |U3 |
|2 |2015-12-04|null |U3 |
|2 |2015-12-05|null |U3 |
+---------+----------+-------+------------+
Cloudera has released a library called spark-ts that offers a suite of useful methods for processing time series and sequential data in Spark. This library supports a number of time-windowed methods for imputing data points based on other data in the sequence.
http://blog.cloudera.com/blog/2015/12/spark-ts-a-new-library-for-analyzing-time-series-data-with-apache-spark/