Why is this lifetime function possible? - rust

I've discovered some behavior I cannot explain. I've written this function:
fn main() {
let word_one = "ONE";
let x;
{
let word_two = "THREE";
x = get_ref(&word_one, &word_two);
}
println!("{}", x);
}
fn get_ref<'a>(a: &'a str, b: &'a str) -> &'a str {
if a.chars().count() >= b.chars().count() {
return a;
}
return b;
}
This function is possible, even if the lifetime of word_two isn't long enough to build a reference. Otherwise this example isn't possible:
fn main() {
let word_one = "ONE";
let x;
{
let word_two = "THREE";
x = &word_two;
}
println!("{}", x);
}
Unfortunately I've discovered nothing in the docs which would explain this behavior.

Rust's auto-derefencing rules are messing you up. What you've written is syntactic sugar for the following:
fn main() {
let word_one = "ONE";
let x;
{
let word_two = "THREE";
x = get_ref(word_one, word_two);
}
println!("{}", x);
}
fn get_ref<'a>(a: &'a str, b: &'a str) -> &'a str {
if a.chars().count() >= b.chars().count() {
return a;
}
return b;
}
This is because word_one and word_two are of type & 'static str. They are references to underlying string objects which have been statically allocated.
On the other hand,
let x;
{
let word = "word";
x = &word;
}
does not work because there is no dereferencing magic. &word is of type &'a &'static str where 'a is the lifetime bounded by the braces. So the value does not live long enough.

Related

How can a Rust developer get an inferred data type? [duplicate]

I have the following:
let mut my_number = 32.90;
How do I print the type of my_number?
Using type and type_of did not work. Is there another way I can print the number's type?
You can use the std::any::type_name function. This doesn't need a nightly compiler or an external crate, and the results are quite correct:
fn print_type_of<T>(_: &T) {
println!("{}", std::any::type_name::<T>())
}
fn main() {
let s = "Hello";
let i = 42;
print_type_of(&s); // &str
print_type_of(&i); // i32
print_type_of(&main); // playground::main
print_type_of(&print_type_of::<i32>); // playground::print_type_of<i32>
print_type_of(&{ || "Hi!" }); // playground::main::{{closure}}
}
Be warned: as said in the documentation, this information must be used for a debug purpose only:
This is intended for diagnostic use. The exact contents and format of the string are not specified, other than being a best-effort description of the type.
If you want your type representation to stay the same between compiler versions, you should use a trait, like in the phicr's answer.
If you merely wish to find out the type of a variable and are willing to do it at compile time, you can cause an error and get the compiler to pick it up.
For example, set the variable to a type which doesn't work:
let mut my_number: () = 32.90;
// let () = x; would work too
error[E0308]: mismatched types
--> src/main.rs:2:29
|
2 | let mut my_number: () = 32.90;
| ^^^^^ expected (), found floating-point number
|
= note: expected type `()`
found type `{float}`
Or call an invalid method:
let mut my_number = 32.90;
my_number.what_is_this();
error[E0599]: no method named `what_is_this` found for type `{float}` in the current scope
--> src/main.rs:3:15
|
3 | my_number.what_is_this();
| ^^^^^^^^^^^^
Or access an invalid field:
let mut my_number = 32.90;
my_number.what_is_this
error[E0610]: `{float}` is a primitive type and therefore doesn't have fields
--> src/main.rs:3:15
|
3 | my_number.what_is_this
| ^^^^^^^^^^^^
These reveal the type, which in this case is actually not fully resolved. It’s called “floating-point variable” in the first example, and “{float}” in all three examples; this is a partially resolved type which could end up f32 or f64, depending on how you use it. “{float}” is not a legal type name, it’s a placeholder meaning “I’m not completely sure what this is”, but it is a floating-point number. In the case of floating-point variables, if you don't constrain it, it will default to f64¹. (An unqualified integer literal will default to i32.)
See also:
What is the {integer} or {float} in a compiler error message?
¹ There may still be ways of baffling the compiler so that it can’t decide between f32 and f64; I’m not sure. It used to be as simple as 32.90.eq(&32.90), but that treats both as f64 now and chugs along happily, so I don’t know.
There is an unstable function std::intrinsics::type_name that can get you the name of a type, though you have to use a nightly build of Rust (this is unlikely to ever work in stable Rust). Here’s an example:
#![feature(core_intrinsics)]
fn print_type_of<T>(_: &T) {
println!("{}", unsafe { std::intrinsics::type_name::<T>() });
}
fn main() {
print_type_of(&32.90); // prints "f64"
print_type_of(&vec![1, 2, 4]); // prints "std::vec::Vec<i32>"
print_type_of(&"foo"); // prints "&str"
}
If you know all the types beforehand, you can use traits to add a type_of method:
trait TypeInfo {
fn type_of(&self) -> &'static str;
}
impl TypeInfo for i32 {
fn type_of(&self) -> &'static str {
"i32"
}
}
impl TypeInfo for i64 {
fn type_of(&self) -> &'static str {
"i64"
}
}
//...
No intrisics or nothin', so although more limited this is the only solution here that gets you a string and is stable. (see Boiethios's answer) However, it's very laborious and doesn't account for type parameters, so we could...
trait TypeInfo {
fn type_name() -> String;
fn type_of(&self) -> String;
}
macro_rules! impl_type_info {
($($name:ident$(<$($T:ident),+>)*),*) => {
$(impl_type_info_single!($name$(<$($T),*>)*);)*
};
}
macro_rules! mut_if {
($name:ident = $value:expr, $($any:expr)+) => (let mut $name = $value;);
($name:ident = $value:expr,) => (let $name = $value;);
}
macro_rules! impl_type_info_single {
($name:ident$(<$($T:ident),+>)*) => {
impl$(<$($T: TypeInfo),*>)* TypeInfo for $name$(<$($T),*>)* {
fn type_name() -> String {
mut_if!(res = String::from(stringify!($name)), $($($T)*)*);
$(
res.push('<');
$(
res.push_str(&$T::type_name());
res.push(',');
)*
res.pop();
res.push('>');
)*
res
}
fn type_of(&self) -> String {
$name$(::<$($T),*>)*::type_name()
}
}
}
}
impl<'a, T: TypeInfo + ?Sized> TypeInfo for &'a T {
fn type_name() -> String {
let mut res = String::from("&");
res.push_str(&T::type_name());
res
}
fn type_of(&self) -> String {
<&T>::type_name()
}
}
impl<'a, T: TypeInfo + ?Sized> TypeInfo for &'a mut T {
fn type_name() -> String {
let mut res = String::from("&mut ");
res.push_str(&T::type_name());
res
}
fn type_of(&self) -> String {
<&mut T>::type_name()
}
}
macro_rules! type_of {
($x:expr) => { (&$x).type_of() };
}
Let's use it:
impl_type_info!(i32, i64, f32, f64, str, String, Vec<T>, Result<T,S>)
fn main() {
println!("{}", type_of!(1));
println!("{}", type_of!(&1));
println!("{}", type_of!(&&1));
println!("{}", type_of!(&mut 1));
println!("{}", type_of!(&&mut 1));
println!("{}", type_of!(&mut &1));
println!("{}", type_of!(1.0));
println!("{}", type_of!("abc"));
println!("{}", type_of!(&"abc"));
println!("{}", type_of!(String::from("abc")));
println!("{}", type_of!(vec![1,2,3]));
println!("{}", <Result<String,i64>>::type_name());
println!("{}", <&i32>::type_name());
println!("{}", <&str>::type_name());
}
output:
i32
&i32
&&i32
&mut i32
&&mut i32
&mut &i32
f64
&str
&&str
String
Vec<i32>
Result<String,i64>
&i32
&str
Rust Playground
UPD The following does not work anymore. Check Shubham's answer for correction.
Check out std::intrinsics::get_tydesc<T>(). It is in "experimental" state right now, but it's OK if you are just hacking around the type system.
Check out the following example:
fn print_type_of<T>(_: &T) -> () {
let type_name =
unsafe {
(*std::intrinsics::get_tydesc::<T>()).name
};
println!("{}", type_name);
}
fn main() -> () {
let mut my_number = 32.90;
print_type_of(&my_number); // prints "f64"
print_type_of(&(vec!(1, 2, 4))); // prints "collections::vec::Vec<int>"
}
This is what is used internally to implement the famous {:?} formatter.
Update, original answer below
How about trait function type_name, which is useful to get type name quickly.
pub trait AnyExt {
fn type_name(&self) -> &'static str;
}
impl<T> AnyExt for T {
fn type_name(&self) -> &'static str {
std::any::type_name::<T>()
}
}
fn main(){
let my_number = 32.90;
println!("{}",my_number.type_name());
}
Output:
f64
Original answer
I write a macro type_of!() to debug, which is original from std dbg!().
pub fn type_of2<T>(v: T) -> (&'static str, T) {
(std::any::type_name::<T>(), v)
}
#[macro_export]
macro_rules! type_of {
// NOTE: We cannot use `concat!` to make a static string as a format argument
// of `eprintln!` because `file!` could contain a `{` or
// `$val` expression could be a block (`{ .. }`), in which case the `eprintln!`
// will be malformed.
() => {
eprintln!("[{}:{}]", file!(), line!());
};
($val:expr $(,)?) => {
// Use of `match` here is intentional because it affects the lifetimes
// of temporaries - https://stackoverflow.com/a/48732525/1063961
match $val {
tmp => {
let (type_,tmp) = $crate::type_of2(tmp);
eprintln!("[{}:{}] {}: {}",
file!(), line!(), stringify!($val), type_);
tmp
}
}
};
($($val:expr),+ $(,)?) => {
($($crate::type_of!($val)),+,)
};
}
fn main(){
let my_number = type_of!(32.90);
type_of!(my_number);
}
Output:
[src/main.rs:32] 32.90: f64
[src/main.rs:33] my_number: f64
** UPDATE ** This has not been verified to work any time recently.
I put together a little crate to do this based off vbo's answer. It gives you a macro to return or print out the type.
Put this in your Cargo.toml file:
[dependencies]
t_bang = "0.1.2"
Then you can use it like so:
#[macro_use] extern crate t_bang;
use t_bang::*;
fn main() {
let x = 5;
let x_type = t!(x);
println!("{:?}", x_type); // prints out: "i32"
pt!(x); // prints out: "i32"
pt!(5); // prints out: "i32"
}
You can also use the simple approach of using the variable in println!("{:?}", var). If Debug is not implemented for the type, you can see the type in the compiler's error message:
mod some {
pub struct SomeType;
}
fn main() {
let unknown_var = some::SomeType;
println!("{:?}", unknown_var);
}
(playpen)
It's dirty but it works.
There's a #ChrisMorgan answer to get approximate type ("float") in stable rust and there's a #ShubhamJain answer to get precise type ("f64") through unstable function in nightly rust.
Now here's a way one can get precise type (ie decide between f32 and f64) in stable rust:
fn main() {
let a = 5.;
let _: () = unsafe { std::mem::transmute(a) };
}
results in
error[E0512]: cannot transmute between types of different sizes, or dependently-sized types
--> main.rs:3:27
|
3 | let _: () = unsafe { std::mem::transmute(a) };
| ^^^^^^^^^^^^^^^^^^^
|
= note: source type: `f64` (64 bits)
= note: target type: `()` (0 bits)
Update
The turbofish variation
fn main() {
let a = 5.;
unsafe { std::mem::transmute::<_, ()>(a) }
}
is slightly shorter but somewhat less readable.
Some other answers don't work, but I find that the typename crate works.
Create a new project:
cargo new test_typename
Modify the Cargo.toml
[dependencies]
typename = "0.1.1"
Modify your source code
use typename::TypeName;
fn main() {
assert_eq!(String::type_name(), "std::string::String");
assert_eq!(Vec::<i32>::type_name(), "std::vec::Vec<i32>");
assert_eq!([0, 1, 2].type_name_of(), "[i32; 3]");
let a = 65u8;
let b = b'A';
let c = 65;
let d = 65i8;
let e = 65i32;
let f = 65u32;
let arr = [1,2,3,4,5];
let first = arr[0];
println!("type of a 65u8 {} is {}", a, a.type_name_of());
println!("type of b b'A' {} is {}", b, b.type_name_of());
println!("type of c 65 {} is {}", c, c.type_name_of());
println!("type of d 65i8 {} is {}", d, d.type_name_of());
println!("type of e 65i32 {} is {}", e, e.type_name_of());
println!("type of f 65u32 {} is {}", f, f.type_name_of());
println!("type of arr {:?} is {}", arr, arr.type_name_of());
println!("type of first {} is {}", first, first.type_name_of());
}
The output is:
type of a 65u8 65 is u8
type of b b'A' 65 is u8
type of c 65 65 is i32
type of d 65i8 65 is i8
type of e 65i32 65 is i32
type of f 65u32 65 is u32
type of arr [1, 2, 3, 4, 5] is [i32; 5]
type of first 1 is i32
If your just wanting to know the type of your variable during interactive development, I would highly recommend using rls (rust language server) inside of your editor or ide. You can then simply permanently enable or toggle the hover ability and just put your cursor over the variable. A little dialog should come up with information about the variable including the type.
This is simplified version of #Boiethios answer. I have removed some '&' symbols from original solution.
fn print_type_of<T>(_: T) {
println!("{}", std::any::type_name::<T>())
}
fn main() {
let s = "Hello";
let i = 42;
print_type_of(s); // &str
print_type_of(i); // i32
print_type_of(main); // playground::main
print_type_of(print_type_of::<i32>); // playground::print_type_of<i32>
print_type_of(|| "Hi!" ); // playground::main::{{closure}}
}
View in Rust Playground
Newly added in version 1.38 std::any::type_name
use std::any::type_name;
fn type_of<T>(_: T) -> &'static str {
type_name::<T>()
}
fn main() {
let x = 21;
let y = 2.5;
println!("{}", type_of(&y));
println!("{}", type_of(x));
}
short story;
fn tyof<T>(_: &T) -> String {
std::any::type_name::<T>().into()
}
long story;
trait Type {
fn type_of(&self) -> String;
}
macro_rules! Type {
($($ty:ty),*) => {
$(
impl Type for $ty {
fn type_of(&self) -> String {
stringify!($ty).into()
}
}
)*
}
}
#[rustfmt::skip]
Type!(
u8, i8, u16, i16, u32, i32, i64, u64, i128, String, [()], (), Vec<()>, &u8, &i8, &u16, &i16, &u32, &i32, &i64, &u64, &i128, &str, &[()], &Vec<()>, &()
// add any struct, enum or type you want
);
macro_rules! tyof {
($var: expr) => {{
$var.type_of()
}};
}
fn main() {
let x = "Hello world!";
println!("{}", tyof!(x));
// or
println!("{}", x.type_of());
let x = 5;
println!("{}", tyof!(x));
// or
println!("{}", x.type_of());
}
Macro form permits an usage "everywhere" while the function need an object to be parse.
Macro form (one liner):
macro_rules! ty {($type:ty) => {std::any::type_name::<$type>()}}
Macro form formated:
macro_rules! ty {
($type:ty) => {
std::any::type_name::<$type>()
};
}
Function form (borrowing is to not destroy the parsed var):
fn type_of<T>(_: &T) -> &'static str {std::any::type_name::<T>()}
fn type_of<T>(_: &T) -> &'static str {
std::any::type_name::<T>()
}
Example:
macro_rules! ty {($type:ty) => {std::any::type_name::<$type>()}}
fn type_of<T>(_: &T) -> &'static str {std::any::type_name::<T>()}
struct DontMater<T>(T);
impl<T: std::fmt::Debug> std::fmt::Debug for DontMater<T> {
fn fmt(&self, fmt: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
fmt.write_fmt(format_args!("DontMater<{}>({:?})", ty!(T), self.0))
}
}
fn main() {
type µ = [Vec<String>; 7];
println!("{:?}", DontMater(5_usize));
println!("{:?}", DontMater("¤"));
println!("{}", ty!(char));
println!("{:?}", ty!(µ));
println!("{}", type_of(&DontMater(72_i8)));
println!("{:?}", type_of(&15_f64));
}
Returns:
DontMater<usize>(5)
DontMater<&str>("¤")
char
"[alloc::vec::Vec<alloc::string::String>; 7]"
env_vars::DontMater<i8>
"f64"
I like previous answer by #Coautose very much, but in case anyone wants just the type name without the namespace, for example C instead of a::b::C, here is a modified version of the macro that appears to work as intended:
macro_rules! ty {
($type:ty) => {{
let result = std::any::type_name::<$type>();
match result.rsplit_once(':') {
Some((_, s)) => s,
None => result,
}
}};
}
Usage:
debug!("Testing type name: {}", ty!(A));
Better to use this:
fn print_type_of<T>(_: &T) -> String {
format!("{}", std::any::type_name::<T>())
}
fn main() {
let s = &"hello world".to_string();
let cloned_s = s.clone();
println!("{:?}", print_type_of(&s));
println!("{:?}", print_type_of(&cloned_s));
}
Taken inference from https://stackoverflow.com/a/29168659/6774636

How to print out type of variable in Rust? [duplicate]

I have the following:
let mut my_number = 32.90;
How do I print the type of my_number?
Using type and type_of did not work. Is there another way I can print the number's type?
You can use the std::any::type_name function. This doesn't need a nightly compiler or an external crate, and the results are quite correct:
fn print_type_of<T>(_: &T) {
println!("{}", std::any::type_name::<T>())
}
fn main() {
let s = "Hello";
let i = 42;
print_type_of(&s); // &str
print_type_of(&i); // i32
print_type_of(&main); // playground::main
print_type_of(&print_type_of::<i32>); // playground::print_type_of<i32>
print_type_of(&{ || "Hi!" }); // playground::main::{{closure}}
}
Be warned: as said in the documentation, this information must be used for a debug purpose only:
This is intended for diagnostic use. The exact contents and format of the string are not specified, other than being a best-effort description of the type.
If you want your type representation to stay the same between compiler versions, you should use a trait, like in the phicr's answer.
If you merely wish to find out the type of a variable and are willing to do it at compile time, you can cause an error and get the compiler to pick it up.
For example, set the variable to a type which doesn't work:
let mut my_number: () = 32.90;
// let () = x; would work too
error[E0308]: mismatched types
--> src/main.rs:2:29
|
2 | let mut my_number: () = 32.90;
| ^^^^^ expected (), found floating-point number
|
= note: expected type `()`
found type `{float}`
Or call an invalid method:
let mut my_number = 32.90;
my_number.what_is_this();
error[E0599]: no method named `what_is_this` found for type `{float}` in the current scope
--> src/main.rs:3:15
|
3 | my_number.what_is_this();
| ^^^^^^^^^^^^
Or access an invalid field:
let mut my_number = 32.90;
my_number.what_is_this
error[E0610]: `{float}` is a primitive type and therefore doesn't have fields
--> src/main.rs:3:15
|
3 | my_number.what_is_this
| ^^^^^^^^^^^^
These reveal the type, which in this case is actually not fully resolved. It’s called “floating-point variable” in the first example, and “{float}” in all three examples; this is a partially resolved type which could end up f32 or f64, depending on how you use it. “{float}” is not a legal type name, it’s a placeholder meaning “I’m not completely sure what this is”, but it is a floating-point number. In the case of floating-point variables, if you don't constrain it, it will default to f64¹. (An unqualified integer literal will default to i32.)
See also:
What is the {integer} or {float} in a compiler error message?
¹ There may still be ways of baffling the compiler so that it can’t decide between f32 and f64; I’m not sure. It used to be as simple as 32.90.eq(&32.90), but that treats both as f64 now and chugs along happily, so I don’t know.
There is an unstable function std::intrinsics::type_name that can get you the name of a type, though you have to use a nightly build of Rust (this is unlikely to ever work in stable Rust). Here’s an example:
#![feature(core_intrinsics)]
fn print_type_of<T>(_: &T) {
println!("{}", unsafe { std::intrinsics::type_name::<T>() });
}
fn main() {
print_type_of(&32.90); // prints "f64"
print_type_of(&vec![1, 2, 4]); // prints "std::vec::Vec<i32>"
print_type_of(&"foo"); // prints "&str"
}
If you know all the types beforehand, you can use traits to add a type_of method:
trait TypeInfo {
fn type_of(&self) -> &'static str;
}
impl TypeInfo for i32 {
fn type_of(&self) -> &'static str {
"i32"
}
}
impl TypeInfo for i64 {
fn type_of(&self) -> &'static str {
"i64"
}
}
//...
No intrisics or nothin', so although more limited this is the only solution here that gets you a string and is stable. (see Boiethios's answer) However, it's very laborious and doesn't account for type parameters, so we could...
trait TypeInfo {
fn type_name() -> String;
fn type_of(&self) -> String;
}
macro_rules! impl_type_info {
($($name:ident$(<$($T:ident),+>)*),*) => {
$(impl_type_info_single!($name$(<$($T),*>)*);)*
};
}
macro_rules! mut_if {
($name:ident = $value:expr, $($any:expr)+) => (let mut $name = $value;);
($name:ident = $value:expr,) => (let $name = $value;);
}
macro_rules! impl_type_info_single {
($name:ident$(<$($T:ident),+>)*) => {
impl$(<$($T: TypeInfo),*>)* TypeInfo for $name$(<$($T),*>)* {
fn type_name() -> String {
mut_if!(res = String::from(stringify!($name)), $($($T)*)*);
$(
res.push('<');
$(
res.push_str(&$T::type_name());
res.push(',');
)*
res.pop();
res.push('>');
)*
res
}
fn type_of(&self) -> String {
$name$(::<$($T),*>)*::type_name()
}
}
}
}
impl<'a, T: TypeInfo + ?Sized> TypeInfo for &'a T {
fn type_name() -> String {
let mut res = String::from("&");
res.push_str(&T::type_name());
res
}
fn type_of(&self) -> String {
<&T>::type_name()
}
}
impl<'a, T: TypeInfo + ?Sized> TypeInfo for &'a mut T {
fn type_name() -> String {
let mut res = String::from("&mut ");
res.push_str(&T::type_name());
res
}
fn type_of(&self) -> String {
<&mut T>::type_name()
}
}
macro_rules! type_of {
($x:expr) => { (&$x).type_of() };
}
Let's use it:
impl_type_info!(i32, i64, f32, f64, str, String, Vec<T>, Result<T,S>)
fn main() {
println!("{}", type_of!(1));
println!("{}", type_of!(&1));
println!("{}", type_of!(&&1));
println!("{}", type_of!(&mut 1));
println!("{}", type_of!(&&mut 1));
println!("{}", type_of!(&mut &1));
println!("{}", type_of!(1.0));
println!("{}", type_of!("abc"));
println!("{}", type_of!(&"abc"));
println!("{}", type_of!(String::from("abc")));
println!("{}", type_of!(vec![1,2,3]));
println!("{}", <Result<String,i64>>::type_name());
println!("{}", <&i32>::type_name());
println!("{}", <&str>::type_name());
}
output:
i32
&i32
&&i32
&mut i32
&&mut i32
&mut &i32
f64
&str
&&str
String
Vec<i32>
Result<String,i64>
&i32
&str
Rust Playground
UPD The following does not work anymore. Check Shubham's answer for correction.
Check out std::intrinsics::get_tydesc<T>(). It is in "experimental" state right now, but it's OK if you are just hacking around the type system.
Check out the following example:
fn print_type_of<T>(_: &T) -> () {
let type_name =
unsafe {
(*std::intrinsics::get_tydesc::<T>()).name
};
println!("{}", type_name);
}
fn main() -> () {
let mut my_number = 32.90;
print_type_of(&my_number); // prints "f64"
print_type_of(&(vec!(1, 2, 4))); // prints "collections::vec::Vec<int>"
}
This is what is used internally to implement the famous {:?} formatter.
Update, original answer below
How about trait function type_name, which is useful to get type name quickly.
pub trait AnyExt {
fn type_name(&self) -> &'static str;
}
impl<T> AnyExt for T {
fn type_name(&self) -> &'static str {
std::any::type_name::<T>()
}
}
fn main(){
let my_number = 32.90;
println!("{}",my_number.type_name());
}
Output:
f64
Original answer
I write a macro type_of!() to debug, which is original from std dbg!().
pub fn type_of2<T>(v: T) -> (&'static str, T) {
(std::any::type_name::<T>(), v)
}
#[macro_export]
macro_rules! type_of {
// NOTE: We cannot use `concat!` to make a static string as a format argument
// of `eprintln!` because `file!` could contain a `{` or
// `$val` expression could be a block (`{ .. }`), in which case the `eprintln!`
// will be malformed.
() => {
eprintln!("[{}:{}]", file!(), line!());
};
($val:expr $(,)?) => {
// Use of `match` here is intentional because it affects the lifetimes
// of temporaries - https://stackoverflow.com/a/48732525/1063961
match $val {
tmp => {
let (type_,tmp) = $crate::type_of2(tmp);
eprintln!("[{}:{}] {}: {}",
file!(), line!(), stringify!($val), type_);
tmp
}
}
};
($($val:expr),+ $(,)?) => {
($($crate::type_of!($val)),+,)
};
}
fn main(){
let my_number = type_of!(32.90);
type_of!(my_number);
}
Output:
[src/main.rs:32] 32.90: f64
[src/main.rs:33] my_number: f64
** UPDATE ** This has not been verified to work any time recently.
I put together a little crate to do this based off vbo's answer. It gives you a macro to return or print out the type.
Put this in your Cargo.toml file:
[dependencies]
t_bang = "0.1.2"
Then you can use it like so:
#[macro_use] extern crate t_bang;
use t_bang::*;
fn main() {
let x = 5;
let x_type = t!(x);
println!("{:?}", x_type); // prints out: "i32"
pt!(x); // prints out: "i32"
pt!(5); // prints out: "i32"
}
You can also use the simple approach of using the variable in println!("{:?}", var). If Debug is not implemented for the type, you can see the type in the compiler's error message:
mod some {
pub struct SomeType;
}
fn main() {
let unknown_var = some::SomeType;
println!("{:?}", unknown_var);
}
(playpen)
It's dirty but it works.
There's a #ChrisMorgan answer to get approximate type ("float") in stable rust and there's a #ShubhamJain answer to get precise type ("f64") through unstable function in nightly rust.
Now here's a way one can get precise type (ie decide between f32 and f64) in stable rust:
fn main() {
let a = 5.;
let _: () = unsafe { std::mem::transmute(a) };
}
results in
error[E0512]: cannot transmute between types of different sizes, or dependently-sized types
--> main.rs:3:27
|
3 | let _: () = unsafe { std::mem::transmute(a) };
| ^^^^^^^^^^^^^^^^^^^
|
= note: source type: `f64` (64 bits)
= note: target type: `()` (0 bits)
Update
The turbofish variation
fn main() {
let a = 5.;
unsafe { std::mem::transmute::<_, ()>(a) }
}
is slightly shorter but somewhat less readable.
Some other answers don't work, but I find that the typename crate works.
Create a new project:
cargo new test_typename
Modify the Cargo.toml
[dependencies]
typename = "0.1.1"
Modify your source code
use typename::TypeName;
fn main() {
assert_eq!(String::type_name(), "std::string::String");
assert_eq!(Vec::<i32>::type_name(), "std::vec::Vec<i32>");
assert_eq!([0, 1, 2].type_name_of(), "[i32; 3]");
let a = 65u8;
let b = b'A';
let c = 65;
let d = 65i8;
let e = 65i32;
let f = 65u32;
let arr = [1,2,3,4,5];
let first = arr[0];
println!("type of a 65u8 {} is {}", a, a.type_name_of());
println!("type of b b'A' {} is {}", b, b.type_name_of());
println!("type of c 65 {} is {}", c, c.type_name_of());
println!("type of d 65i8 {} is {}", d, d.type_name_of());
println!("type of e 65i32 {} is {}", e, e.type_name_of());
println!("type of f 65u32 {} is {}", f, f.type_name_of());
println!("type of arr {:?} is {}", arr, arr.type_name_of());
println!("type of first {} is {}", first, first.type_name_of());
}
The output is:
type of a 65u8 65 is u8
type of b b'A' 65 is u8
type of c 65 65 is i32
type of d 65i8 65 is i8
type of e 65i32 65 is i32
type of f 65u32 65 is u32
type of arr [1, 2, 3, 4, 5] is [i32; 5]
type of first 1 is i32
If your just wanting to know the type of your variable during interactive development, I would highly recommend using rls (rust language server) inside of your editor or ide. You can then simply permanently enable or toggle the hover ability and just put your cursor over the variable. A little dialog should come up with information about the variable including the type.
This is simplified version of #Boiethios answer. I have removed some '&' symbols from original solution.
fn print_type_of<T>(_: T) {
println!("{}", std::any::type_name::<T>())
}
fn main() {
let s = "Hello";
let i = 42;
print_type_of(s); // &str
print_type_of(i); // i32
print_type_of(main); // playground::main
print_type_of(print_type_of::<i32>); // playground::print_type_of<i32>
print_type_of(|| "Hi!" ); // playground::main::{{closure}}
}
View in Rust Playground
Newly added in version 1.38 std::any::type_name
use std::any::type_name;
fn type_of<T>(_: T) -> &'static str {
type_name::<T>()
}
fn main() {
let x = 21;
let y = 2.5;
println!("{}", type_of(&y));
println!("{}", type_of(x));
}
short story;
fn tyof<T>(_: &T) -> String {
std::any::type_name::<T>().into()
}
long story;
trait Type {
fn type_of(&self) -> String;
}
macro_rules! Type {
($($ty:ty),*) => {
$(
impl Type for $ty {
fn type_of(&self) -> String {
stringify!($ty).into()
}
}
)*
}
}
#[rustfmt::skip]
Type!(
u8, i8, u16, i16, u32, i32, i64, u64, i128, String, [()], (), Vec<()>, &u8, &i8, &u16, &i16, &u32, &i32, &i64, &u64, &i128, &str, &[()], &Vec<()>, &()
// add any struct, enum or type you want
);
macro_rules! tyof {
($var: expr) => {{
$var.type_of()
}};
}
fn main() {
let x = "Hello world!";
println!("{}", tyof!(x));
// or
println!("{}", x.type_of());
let x = 5;
println!("{}", tyof!(x));
// or
println!("{}", x.type_of());
}
Macro form permits an usage "everywhere" while the function need an object to be parse.
Macro form (one liner):
macro_rules! ty {($type:ty) => {std::any::type_name::<$type>()}}
Macro form formated:
macro_rules! ty {
($type:ty) => {
std::any::type_name::<$type>()
};
}
Function form (borrowing is to not destroy the parsed var):
fn type_of<T>(_: &T) -> &'static str {std::any::type_name::<T>()}
fn type_of<T>(_: &T) -> &'static str {
std::any::type_name::<T>()
}
Example:
macro_rules! ty {($type:ty) => {std::any::type_name::<$type>()}}
fn type_of<T>(_: &T) -> &'static str {std::any::type_name::<T>()}
struct DontMater<T>(T);
impl<T: std::fmt::Debug> std::fmt::Debug for DontMater<T> {
fn fmt(&self, fmt: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
fmt.write_fmt(format_args!("DontMater<{}>({:?})", ty!(T), self.0))
}
}
fn main() {
type µ = [Vec<String>; 7];
println!("{:?}", DontMater(5_usize));
println!("{:?}", DontMater("¤"));
println!("{}", ty!(char));
println!("{:?}", ty!(µ));
println!("{}", type_of(&DontMater(72_i8)));
println!("{:?}", type_of(&15_f64));
}
Returns:
DontMater<usize>(5)
DontMater<&str>("¤")
char
"[alloc::vec::Vec<alloc::string::String>; 7]"
env_vars::DontMater<i8>
"f64"
I like previous answer by #Coautose very much, but in case anyone wants just the type name without the namespace, for example C instead of a::b::C, here is a modified version of the macro that appears to work as intended:
macro_rules! ty {
($type:ty) => {{
let result = std::any::type_name::<$type>();
match result.rsplit_once(':') {
Some((_, s)) => s,
None => result,
}
}};
}
Usage:
debug!("Testing type name: {}", ty!(A));
Better to use this:
fn print_type_of<T>(_: &T) -> String {
format!("{}", std::any::type_name::<T>())
}
fn main() {
let s = &"hello world".to_string();
let cloned_s = s.clone();
println!("{:?}", print_type_of(&s));
println!("{:?}", print_type_of(&cloned_s));
}
Taken inference from https://stackoverflow.com/a/29168659/6774636

Can't understand rust lifetime conflict

I was doing a dummy app to get a grasp on Rust concepts.
While doing an XML structure I got the error
cannot infer an appropriate lifetime for lifetime parameter in
function call due to conflicting requirements
The definition is
impl<'a> XmlFile<'a>
and
pub fn get_node<'b>(self, node: &'b [u8]) -> &'b [u8]
From what I understand, the Rust compiler does not like that the return variable can be dropped after the function ends, if the XML file drops at a different time (since they have 'a and 'b lifetimes).
But if I put the same, I get the error
lifetime 'a is already in scope
, so I don't see a way to solve the error.
Any idea what I am missing? I think I must still be lacking some Rust concept.
Edit: Misconception from my part adding the code that causes the problem
#[allow(unused_parens)]
pub struct XmlFile<'a> {
last_open_node: &'a[u8],
last_published: String,
index_pos: u64,
content: &'a[u8],
}
impl<'a> XmlFile<'a> {
pub fn new<'b: 'a>(file: &'b [u8]) -> XmlFile<'b> {
let new_xml = XmlFile {
last_open_node: &[0: u8],
last_published: "".to_string(),
index_pos: 0,
content: file,
};
return new_xml;
}
pub fn get_node<'b: 'a>(&self, node: &'b [u8]) -> &'b [u8] {
let buf_index: u64 = 0;
let has_matched: bool = false;
self.index_pos = 0;
for c in self.content {
self.index_pos += 1;
if (c == &b'<') {
buf_index = self.index_pos;
while (c != &b' ') {
for b in node {
if b == &self.content[buf_index as usize] {
has_matched = true;
buf_index += 1
} else {
has_matched = false;
continue;
}
}
if has_matched {
while(self.content[buf_index as usize] != b'>'){
buf_index+=1;
}
let r = &self.content[self.index_pos as usize..buf_index as usize];
return r;
}
}
}
}
return &[0 : u8];
}
pub fn get_rss_version<'b:'a>(&self) -> Result<u64 , &'static str>{
let found_slice = Self::get_node(&self, "rss".as_bytes());
if(found_slice != &[0:u8]){
let version_value = Self::get_value(found_slice);
if(version_value.is_ok()){
return Ok(version_value.unwrap()) ;
}
else{
return Err("Couldn't retrieve version from tag");
}
}
else{
println!("Couldn't find tag <rss");
return Err("Couldn't find tag <rss");
}
}
}
Let's look at your signature for get_node:
pub fn get_node<'b: 'a>(&mut self, node: &'b [u8]) -> &'b [u8] { ... }
and what you're actually returning within this method:
let r = &self.content[self.index_pos as usize..buf_index as usize];
return r;
The signature for get_node indicates this method will be returning a sub-slice of node, but you're actually returning a sub-slice of the XmlFile's content.
One solution to the problem is to understand that the return value isn't a part of node, but instead a part of self.content. Therefore, we can change the signature to:
pub fn get_node<'b>(&mut self, node: &'b [u8]) -> &'a [u8] { ... }
In this case we can even elide the manual specification of lifetimes entirely:
pub fn get_node(&mut self, node: &[u8]) -> &[u8] { ... }
Here's a cleaned up version of your get_node method that actually compiles:
pub fn get_node(&mut self, node: &[u8]) -> &[u8] {
let mut buf_index: u64;
let mut has_matched: bool = false;
self.index_pos = 0;
for c in self.content {
self.index_pos += 1;
if c == &b'<' {
buf_index = self.index_pos;
while c != &b' ' {
for b in node {
if b == &self.content[buf_index as usize] {
has_matched = true;
buf_index += 1
} else {
has_matched = false;
continue;
}
}
if has_matched {
while self.content[buf_index as usize] != b'>' {
buf_index += 1;
}
let r = &self.content[self.index_pos as usize..buf_index as usize];
return r;
}
}
}
}
return &[0u8];
}

What is the right way to share a reference between closures if the value outlives the closures?

I want to share a reference between two closures; mutably in one closure. This is an artificial situation, but I find it interesting in the context of learning Rust.
In order to make it work, I had to make use of Rc, Weak, and RefCell. Is there a simpler way of achieving this?
use std::cell::RefCell;
use std::rc::Rc;
#[derive(Debug)]
struct Foo {
i: i32,
}
impl Foo {
fn get(&self) -> i32 {
self.i
}
fn incr(&mut self) {
self.i += 1
}
}
fn retry<O, N>(mut operation: O, mut notify: N) -> i32
where
O: FnMut() -> i32,
N: FnMut() -> (),
{
operation();
notify();
operation()
}
fn something(f: &mut Foo) {
let f_rc = Rc::new(RefCell::new(f));
let f_weak = Rc::downgrade(&f_rc);
let operation = || {
// f.get()
let cell = f_weak.upgrade().unwrap();
let f = cell.borrow();
f.get()
};
let notify = || {
// f.incr();
let cell = f_weak.upgrade().unwrap();
let mut f = cell.borrow_mut();
f.incr();
};
retry(operation, notify);
println!("{:?}", f_rc);
}
fn main() {
let mut f = Foo { i: 1 };
something(&mut f);
}
Reference counting is unnecessary here because the entity lives longer than any of the closures. You can get away with:
fn something(f: &mut Foo) {
let f = RefCell::new(f);
let operation = || f.borrow().get();
let notify = || {
f.borrow_mut().incr();
};
retry(operation, notify);
println!("{:?}", f);
}
which is quite simpler.
The use of RefCell, however, is necessary to move the enforcement of the Aliasing XOR Mutability from compile-time to run-time.

How to define mutual recursion with closures?

I can do something like this:
fn func() -> (Vec<i32>, Vec<i32>) {
let mut u = vec![0;5];
let mut v = vec![0;5];
fn foo(u: &mut [i32], v: &mut [i32], i: usize, j: usize) {
for k in i+1..u.len() {
u[k] += 1;
bar(u, v, k, j);
}
}
fn bar(u: &mut [i32], v: &mut [i32], i: usize, j: usize) {
for k in j+1..v.len() {
v[k] += 1;
foo(u, v, i, k);
}
}
foo(&mut u, &mut v, 0, 0);
(u,v)
}
fn main() {
let (u,v) = func();
println!("{:?}", u);
println!("{:?}", v);
}
but I would prefer to do something like this:
fn func() -> (Vec<i32>, Vec<i32>) {
let mut u = vec![0;5];
let mut v = vec![0;5];
let foo = |i, j| {
for k in i+1..u.len() {
u[k] += 1;
bar(k, j);
}
};
let bar = |i, j| {
for k in j+1..v.len() {
v[k] += 1;
foo(i, k);
}
};
foo(0, 0);
(u,v)
}
fn main() {
let (u,v) = func();
println!("{:?}", u);
println!("{:?}", v);
}
The second example doesn't compile with the error: unresolved name bar.
In my task I can do it through one recursion, but it will not look clear.
Does anyone have any other suggestions?
I have a solution for mutually recursive closures, but it doesn't work with multiple mutable borrows, so I couldn't extend it to your example.
There is a way to use define mutually recursive closures, using an approach similar to how this answer does single recursion. You can put the closures together into a struct, where each of them takes a borrow of that struct as an extra argument.
fn func(n: u32) -> bool {
struct EvenOdd<'a> {
even: &'a Fn(u32, &EvenOdd<'a>) -> bool,
odd: &'a Fn(u32, &EvenOdd<'a>) -> bool
}
let evenodd = EvenOdd {
even: &|n, evenodd| {
if n == 0 {
true
} else {
(evenodd.odd)(n - 1, evenodd)
}
},
odd: &|n, evenodd| {
if n == 0 {
false
} else {
(evenodd.even)(n - 1, evenodd)
}
}
};
(evenodd.even)(n, &evenodd)
}
fn main() {
println!("{}", func(5));
println!("{}", func(6));
}
While defining mutually recursive closures works in some cases, as demonstrated in the answer by Alex Knauth, I don't think that's an approach you should usually take. It is kind of opaque, has some limitations pointed out in the other answer, and it also has a performance overhead since it uses trait objects and dynamic dispatch at runtime.
Closures in Rust can be thought of as functions with associated structs storing the data you closed over. So a more general solution is to define your own struct storing the data you want to close over, and define methods on that struct instead of closures. For this case, the code could look like this:
pub struct FooBar {
pub u: Vec<i32>,
pub v: Vec<i32>,
}
impl FooBar {
fn new(u: Vec<i32>, v: Vec<i32>) -> Self {
Self { u, v }
}
fn foo(&mut self, i: usize, j: usize) {
for k in i+1..self.u.len() {
self.u[k] += 1;
self.bar(k, j);
}
}
fn bar(&mut self, i: usize, j: usize) {
for k in j+1..self.v.len() {
self.v[k] += 1;
self.foo(i, k);
}
}
}
fn main() {
let mut x = FooBar::new(vec![0;5], vec![0;5]);
x.foo(0, 0);
println!("{:?}", x.u);
println!("{:?}", x.v);
}
(Playground)
While this can get slightly more verbose than closures, and requires a few more explicit type annotations, it's more flexible and easier to read, so I would generally prefer this approach.

Resources